10.命題:“?x∈R,ex<x”的否定是?x∈R,ex≥x.

分析 直接利用全稱(chēng)命題的否定是特稱(chēng)命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)槿Q(chēng)命題的否定是特稱(chēng)命題,所以,
命題:“?x∈R,ex<x”的否定是:?x∈R,ex≥x.
故答案為:?x∈R,ex≥x.

點(diǎn)評(píng) 本題考查全稱(chēng)命題與特稱(chēng)命題的否定關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求函數(shù)y=$\frac{a{x}^{2}+x+1}{x+1}$(x≥3且a>0)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P為正方體內(nèi)一點(diǎn)(包括表面),若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,且0≤x≤y≤z≤1,則P點(diǎn)所有可能的位置所構(gòu)成的幾何體的體積為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題“?k0∈R,使函數(shù)f(x)=x2+k0x(x∈R)是偶函數(shù)”的否定是( 。
A.?k∈R,函數(shù)f(x)=x2+kx(x∈R)不是偶函數(shù)
B.?k0∈R,使函數(shù)f(x)=x2+k0x(x∈R)都是奇函數(shù)
C.?k∈R,函數(shù)f(x)=x2+kx(x∈R)不是偶函數(shù)
D.?k0∈R,使函數(shù)f(x)=x2+k0x(x∈R)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c且b=2,c=3,cosC=$\frac{1}{3}$
(1)求邊a的長(zhǎng)度;
(2)求△ABC的面積;
(3)求cos(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若P(A∪B)=P(A)+P(B)=1,事件A與事件B的關(guān)系是( 。
A.互斥不對(duì)立B.對(duì)立不互斥C.互斥且對(duì)立D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,y),若x∈{-1,0,1},y∈{-2,0,2,4},則事件“$\overrightarrow{a}$⊥$\overrightarrow$”發(fā)生的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知P1(x1,y1),P2(x2,y2)在圓O:x2+y2=4上,∠P1OP2=θ(θ為鈍角),sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,則x1x2+y1y2=( 。
A.$\frac{{2\sqrt{2}+8}}{3}$B.$\frac{{2\sqrt{2}-4}}{3}$C.$\frac{{2\sqrt{2}+4}}{3}$D.$\frac{{2\sqrt{2}-8}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=$\frac{1-ta{n}^{2}2x}{1+ta{n}^{2}2x}$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案