【題目】已知函數(shù)yfx)=。

(1)求yfx)的最大值;

(2)設(shè)實(shí)數(shù)a>0,求函數(shù)Fx)=afx)在[a,2a]上的最小值。

【答案】(1);(2)見解析.

【解析】

試題(1)令=0,求得極值點(diǎn),因此可得到單調(diào)區(qū)間,從而得到最大值;

(2)根據(jù)(1)可知F(x)的單調(diào)性,得到F(x)[a,2a]上的最小值為F(a)F(2a)之中的較小者,作差討論即可得到結(jié)果.

試題解析:(1).

=0得xe.

因?yàn)楫?dāng)x∈(0,e)時(shí),>0,fx)在(0,e)上為增函數(shù);

當(dāng)x∈(e,+∞)時(shí),<0,fx)在(e,+∞)上為減函數(shù),

所以fxmaxfe)=

(2)因?yàn)?/span>a>0,由(1)知,Fx) 在(0,e)上單調(diào)遞增,

在(e,+∞)上單調(diào)遞減,

所以Fx) 在[a,2a]上的最小值Fxmin=min{Fa),F(2a)}。

因?yàn)?/span>Fa)-F(2a)=,

所以當(dāng)0<a≤2時(shí),Fa)-F(2a)≤0,FxminFa)=ln a,

當(dāng)a>2時(shí),Fa)-F(2a)>0,FxminF(2a)=ln2a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,.已知,分別是,的中點(diǎn).將沿折起,使的位置且二面角的大小是.連接,,如圖:

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a為常數(shù))的最大值為0.

1)求實(shí)數(shù)a的值;

2)設(shè)函數(shù),當(dāng)時(shí),求證:函數(shù)有兩個(gè)不同的零點(diǎn),),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)名同學(xué),每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)m來(lái)估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是那么可以估計(jì)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年電商雙十一大戰(zhàn)即將開始.某電商為了盡快占領(lǐng)市場(chǎng),搶占今年雙十一的先機(jī),對(duì)成都地區(qū)年齡在1575歲的人群是否網(wǎng)上購(gòu)物的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用網(wǎng)上購(gòu)物的人數(shù)如下所示:(年齡單位:歲)

年齡段

頻率

0.1

0.32

0.28

0.22

0.05

0.03

購(gòu)物人數(shù)

8

28

24

12

2

1

1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為網(wǎng)上購(gòu)物與年齡有關(guān)?

年齡低于45

年齡不低于45

總計(jì)

使用網(wǎng)上購(gòu)物

不使用網(wǎng)上購(gòu)物

總計(jì)

2)若從年齡在的樣本中各隨機(jī)選取2人進(jìn)行座談,記選中的4人中使用網(wǎng)上購(gòu)物的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米)的散點(diǎn)圖.(圖中月份代碼1—13分別對(duì)應(yīng)2017年1月—2018年1月)

由散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到兩個(gè)回歸方程分別為,并得到以下一些統(tǒng)計(jì)量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好;

(2)某位購(gòu)房者擬于2018年6月份購(gòu)買這個(gè)小區(qū)平方米的二手房(欲

購(gòu)房為其家庭首套房).若購(gòu)房時(shí)該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請(qǐng)你利用(1)中擬合效果更好的模型估算該購(gòu)房者應(yīng)支付的購(gòu)房金額.(購(gòu)房金額=房款+稅費(fèi);房屋均價(jià)精確到0.001萬(wàn)元/平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項(xiàng)稅費(fèi),稅費(fèi)是按房屋的計(jì)稅價(jià)格進(jìn)行征收.(計(jì)稅價(jià)格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個(gè)人所得稅

(賣方繳納)

首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,. 參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線

1)求函數(shù)的極值;

2)試確定曲線與直線的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解我校高2017級(jí)本部和大學(xué)城校區(qū)的學(xué)生是否愿意參加自主招生培訓(xùn)的情況,對(duì)全年級(jí)2000名高三學(xué)生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下表:

區(qū)

愿意參加

愿意參加

重慶一中本部校區(qū)

220

980

重慶一中大學(xué)城校區(qū)

80

720

1從愿意參加自主招生培訓(xùn)的同學(xué)中按分層抽樣的方法抽取15人,則大學(xué)城校區(qū)應(yīng)抽取幾人;

2現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“如花姐”完全會(huì)答的有3題,不完全會(huì)的有2道,不完全會(huì)的每道題她得分概率滿足:,假設(shè)解答各題之間沒有影響,

①對(duì)于一道不完全會(huì)的題,求“如花姐”得分的均值;

②試求“如花姐”在本次摸底考試中總得分的數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案