13.參數(shù)方程$\left\{\begin{array}{l}{x=5}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))表示的曲線是( 。
A.一條直線B.兩條直線C.一條射線D.一條線段

分析 由x=5可知曲線與y軸平行,由y=sinθ可得-1≤y≤1,故曲線表示線段.

解答 解:由參數(shù)方程可知曲線的一般方程為x=5(-1≤y≤1).
∴曲線表示與y軸平行的一條長度為2的線段.
故選D.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.在直角坐標系中,如果不同兩點A(a,b),B(-a,-b)都在函數(shù)y=H(x)的圖象上,則稱點對[A,B]為函數(shù)H(x)的一組“文雅點”([A,B]與[B,A]看作一組),已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+2)=$\sqrt{2}$•f(x),且當x∈[0,2]時,f(x)=sin$\frac{π}{2}$x,且函數(shù)H(x)=$\left\{\begin{array}{l}{f(x),0<x≤8}\\{g(x),-8≤x<0}\end{array}\right.$ 的“文雅點”有4組,則g(x)的表達式可以為(
A.g(x)=m,其中m為常數(shù),且m∈(-2$\sqrt{2}$,-$\sqrt{2}$)B.g(x)=-($\frac{1}{2}$)x
C.g(x)=m,其中m為常數(shù),且m∈(-2,-$\sqrt{2}$)D.g(x)=-ln(-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.我校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選一題答一題的方式進行.每位選手最多有5次答題機會.選手累計答對3題或答錯三題終止初賽的比賽.答對三題直接進入決賽,答錯3題則被淘汰.已知選手甲連續(xù)兩次答錯的概率為$\frac{1}{9}$(已知甲回答每個問題的正確率相同,并且相互之間沒有影響)
(1)求選手甲回答一個問題的正確率;
(2)求選手甲進入決賽的概率;
(3)設選手甲在初賽中答題個數(shù)為X,試寫出X的分布列,并求甲在初賽中平均答題個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.(1)已知點$A(-\frac{1}{2},0)$,點B是圓$F:{(x-\frac{1}{2})^2}+{y^2}=4$上一動點,線段AB的垂直平分線交BF于點P,則動點P的軌跡方程為${x^2}+\frac{{4{y^2}}}{3}=1$
(2)在平面直角坐標系中,A,B分別為x軸和y軸上的動點,若以AB為直徑的圓C與直線2x+y-4=0相切,則動圓圓心C的軌跡為拋物線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖是某幾何體的三視圖,則該幾何體的其全面積為72,其外接球的半徑為$\frac{{5\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l:$\left\{\begin{array}{l}{x=1+cos60°t}\\{y=sin60°t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)分別將直線l和曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(2)求與直線l平行且與曲線C相切的直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知A、B、C、D、E五所高校舉行自主招生考試,某同學決定按A、B、C、D、E的順序參加考試.假設該同學參加每所高校的考試獲得通過的概率為$\frac{1}{3}$.
(1)如果該同學五所高校的考試都參加,求在恰有兩所通過的條件下,不是連續(xù)兩所通過的概率;
(2)如果該同學一旦通過某所高校的考試,就不再參加后面高校的考試,假設參加每所高?荚囁璧馁M用均為162元,試求該同學參加考試所需費用X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a、b、c都是正數(shù),求證ab(a+b)+bc(b+c)+ca(c+a)≥6abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知:x,y,z∈R+且$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,求證:$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$≥1.

查看答案和解析>>

同步練習冊答案