19.等邊△ABC的邊長為1,記$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow$-$\overrightarrow$$•\overrightarrow{c}$-$\overrightarrow{c}$•$\overrightarrow{a}$等于$\frac{1}{2}$.

分析 由正三角形可知兩兩向量夾角都是120°,代入數(shù)量積公式計算即可.

解答 解:∵△ABC是等邊三角形,∴$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$中任意兩向量的夾角都是120°.
∴$\overrightarrow{a}•\overrightarrow=\overrightarrow•\overrightarrow{c}=\overrightarrow{a}•\overrightarrow{c}$=1×1×cos120°=-$\frac{1}{2}$.
∴$\overrightarrow{a}$•$\overrightarrow$-$\overrightarrow$$•\overrightarrow{c}$-$\overrightarrow{c}$•$\overrightarrow{a}$=-$\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$=$\frac{1}{2}$.
故答案為$\frac{1}{2}$.

點評 本題考查了平面向量的數(shù)量積運(yùn)算,向量夾角的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E為PD的中點.
(1)求作:AE∥平面PBC;
(2)求面PAD與面PBC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱錐A-BCD中,平面ABD和底面BCD垂直,點F是棱CD上的動點,E,O分別是AD,BD的中點,已知AB=AD=$\sqrt{2}$,BD=2CD,∠BAD=∠BDC=90°.
(1)證明:不論點F在棱CD上如何移動,總有OE⊥AF;
(2)求四面體F-DEO的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,BC=1,CC1=2,BC1=$\sqrt{3}$.
(1)求證:BC1⊥平面ABC;
(2)當(dāng)二面角A-CC1-B為$\frac{π}{3}$時,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象是連續(xù)不間斷的,且有如下的x,f(x)對應(yīng)值表:
x123456
f(x)11.88.6-6.44.5-26.8-86.2
則函數(shù)f(x)在區(qū)間[1,6]上的零點有( 。
A.2個B.3個C.至少3個D.至多2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB=AD=AA1=2.底面ABCD為直角梯形,其中AD∥BC,∠BAD=90°,∠BCD=45°.
(])求三棱錐C-B1C1D1的體積;
(2)求證:B1D1⊥平面CDD1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)ABCDEF是邊長為1的正六邊形,PA垂直于正六邊形所在的平面,且PA=2.求
(1)點P到直線CD的距離,
(2)直線BC與平面PAD的距離,
(3)點A到平面PBD的距離,
(4)異面直線CD與PE所成的角,
(5)直線PD與平面PAB所成的角,
(6)二面角C-PD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,最小正周期為π,且在[$\frac{π}{3}$,$\frac{5π}{6}$]上是減函數(shù)的是( 。
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x-$\frac{π}{6}$)C.y=sin(2x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=$\sqrt{x}$-$\frac{1}{x}$.求證:
(1)f(x)在定義域上為增函數(shù);
(2)滿足等式f(x)=1的實數(shù)x的值至多只有一個.

查看答案和解析>>

同步練習(xí)冊答案