4.如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB=AD=AA1=2.底面ABCD為直角梯形,其中AD∥BC,∠BAD=90°,∠BCD=45°.
(])求三棱錐C-B1C1D1的體積;
(2)求證:B1D1⊥平面CDD1C1

分析 (1)求出底面積,即可求三棱錐C-B1C1D1的體積;
(2)利用線面垂直的判定定理證明B1D1⊥平面CDD1C1

解答 (1)解:∵AB=AD=2.底面ABCD為直角梯形,其中AD∥BC,∠BAD=90°,∠BCD=45°,
∴B1C1=4,
∵AA1⊥底面ABCD,AA1=2,
∴三棱錐C-B1C1D1的體積=$\frac{1}{3}×\frac{1}{2}×4×2×2$=$\frac{8}{3}$;
(2)證明:△B1C1D1中,B1C1=4,B1D1=D1C1=2$\sqrt{2}$,
∴B1C12=B1D12+D1C12
∴B1D1⊥D1C1,
∵四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,
∴CC1⊥底面A1B1C1D1,
∴CC1⊥B1D1,
∵D1C1∩CC1=C1,
∴B1D1⊥平面CDD1C1

點(diǎn)評 本題考查三棱錐C-B1C1D1的體積,線面垂直的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一位母親記錄了兒子3-9歲的身高,收集了好幾組數(shù)據(jù)(略),由此建立的身高與年齡的回歸模型為y=7.18x+73.95,用這個(gè)模型預(yù)測這個(gè)孩子10歲時(shí)的身高,則正確的敘述是( 。
A.身高在145.75cm以上B.身高在145.75cm左右
C.身高一定是145.75cmD.身高在145.75cm以下

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線l:8x-6y-3=0被圓O:x2+y2-2x+a=0所截得弦的長度為$\sqrt{3}$,則實(shí)數(shù)a的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x∈Z||x|<4},B={x|x-1≥0},則A∩B等于( 。
A.(1,4)B.[1,4)C.{1,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等邊△ABC的邊長為1,記$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow$-$\overrightarrow$$•\overrightarrow{c}$-$\overrightarrow{c}$•$\overrightarrow{a}$等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,a2=4,$\frac{2{S}_{n}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*,寫出命題“存在正整數(shù)n,有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$≥$\frac{4}{7}$”的否定,并證明其為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過F的直線l與拋物線交于A,B兩點(diǎn),M為拋物線C的準(zhǔn)線與x軸的交點(diǎn),若tan∠AMB=2$\sqrt{2}$,則|AB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的最值.
(1)y=-9cosx+1;
(2)y=(cosx-$\frac{1}{2}$)2-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的斜率k=$\frac{2}{3}$,且與兩坐標(biāo)軸圍成的三角形面積為3,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案