分析 由條件求得cosBcosC=5sinBsinC,再利用誘導公式、兩角和差的三角公式化簡所給的式子可得結(jié)果.
解答 解:△ABC中,tanBtanC=$\frac{sinBsinC}{cosBcosC}$=$\frac{1}{5}$,∴cosBcosC=5sinBsinC,
則$\frac{cosA}{cos(B-C)}$=$\frac{-cos(B+C)}{cos(B-C)}$=$\frac{-cosBcosC+sinBsinC}{cosBcosC+sinBsinC}$=$\frac{-4sinBsinC}{6sinBsinC}$=-$\frac{2}{3}$,
故答案為:-$\frac{2}{3}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導公式、兩角和差的三角公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com