若數(shù)列{an}的前n項(xiàng)和Sn=n2+n,則數(shù)列{an}的通項(xiàng)公式an=
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用公式an=
S1,n=1
Sn-Sn-1,n≥2
,能求出an
解答: 解:∵數(shù)列{an}的前n項(xiàng)和Sn=n2+n,
∴a1=S1=1+1=2,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
當(dāng)n=1時(shí),上式成立,
∴an=2n.
故答案為:2n.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從2011名學(xué)生中選取50名組成參觀團(tuán),若采用下面的方法選取,先用簡(jiǎn)單隨機(jī)抽樣法從2011人中剔除11人,剩下的2000人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的概率( 。
A、不全相等
B、均不相等
C、都相等且為
50
2011
D、都相等且為
1
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,則“a<b”是“a2|a|<b2|b|”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={1,2,5},B={2,3,5},則A∪B等于(  )
A、{2,3}
B、{2,5}
C、{2}
D、{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,已知S1=1,S2=2,且Sn+1+2Sn-1=3Sn,(n≥2且n∈N*),則此數(shù)列為( 。
A、等差數(shù)列
B、等比數(shù)列
C、從第二項(xiàng)起為等差數(shù)列
D、從第二項(xiàng)起為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果數(shù)列 {an}滿足 
1
an+1
-
1
an
=1,a1=1,則 a2015=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)對(duì)稱,且滿足f(x)+f(x-
3
2
)=0,f(-1)=3,f(0)=-6
(1)求證f(x)是以3為周期的函數(shù);
(2)求證f(x)是偶函數(shù);
(3)求f(1)+f(2)+f(3)+…+f(2012)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=2x2及點(diǎn)P(1,2),則在點(diǎn)P處的曲線y=2x2的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)(x∈R)對(duì)任意實(shí)數(shù)x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1)•f(x2),求證:f(x)為偶函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案