分析 (1)利用三角形相似,證明∠ACD=∠AEF,即可證明C、D、E、F四點(diǎn)共圓;
(2)證明△AEB≌△AEF,EB=EF,利用△ACD∽△BED,即可證明結(jié)論.
解答 證明:(1)∵AC•AF=AD•AE,
∴$\frac{AC}{AD}=\frac{AE}{AF}$,
∵∠CAD=∠EAF,
∴△CAD∽△EAF,
∴∠ACD=∠AEF,
∴C、D、E、F四點(diǎn)共圓;
(2)由(1)可得∠ACD=∠AEF,
∵∠ACD=∠BED,
∴∠AEF=∠BED,
∴∠AEF=∠AEB,
∵AE=AE,∠BAE=∠FAE,
∴△AEB≌△AEF,
∴EB=EF,
∵△ACD∽△BED,
∴$\frac{AC}{BE}=\frac{CD}{ED}$,
∴AC•DE=BE•CD
∴AC•DE=EF•CD.
點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,正確證明三角形相似是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{22}{13}$ | C. | $\frac{3}{22}$ | D. | $\frac{13}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com