13.若x,y滿足$\left\{\begin{array}{l}{x-2y≤0}\\{x-y+2≥0}\\{x+2y-4≤0}\end{array}\right.$,則z=x+y的最大值為3.

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-2y≤0}\\{x-y+2≥0}\\{x+2y-4≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-4=0}\end{array}\right.$,解得A(2,1),
化z=x+y為y=-x+z,
由圖可知,當直線y=-x+z過點A時,直線在y軸上的截距最大,z有最大值為3.
故答案為:3.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,若BC=3,∠A=$\frac{π}{3}$,AC=$\sqrt{3}$,則∠C的大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.[(-2)6]${\;}^{\frac{1}{3}}$-(-1)0=3.3${\;}^{lo{g}_{3}\root{3}{4}+lo{g}_{3}\root{3}{2}}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知a=$\int_0^{\frac{π}{2}}{cosxdx}$,則二項式${(a\sqrt{x}-\frac{1}{x})^6}$的展開式中的常數(shù)項為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列四個命題中,正確的有( 。ㄗⅲ?表示存在,?表示任意)
①兩個變量間的相關系數(shù)r越小,說明兩變量間的線性相關程度越低;
②命題p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定¬p:“?x∈R,x2-x-1<0”;
③在△ABC中,“A>60°”是“cosA<$\frac{1}{2}$”的充要條件.
④若a=0.32,b=20.3,c=log0.32,則c<a<b.
A.①③④B.①④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)f(x)=$\left\{\begin{array}{l}{{5}^{-x},x∈(-1,0]}\\{{5}^{x},x∈[0,1]}\end{array}\right.$,則f(log54)=( 。
A.$\frac{1}{3}$B.3C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={0,1,2,3,4},N={x|1<log2(x+2)<2},則M∩N=( 。
A.{1}B.{2,3}C.{0,1}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在平面直角坐標系中,若不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x-y+2≥0}\\{x≤k}\end{array}\right.$(k為常數(shù))表示的平面區(qū)域D的面積是16,那么實數(shù)k的值為3;若P(x,y)為D中任意一點,則目標函數(shù)z=2x-y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+cos(x-$\frac{π+1}{2}$),則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)的值為2016.

查看答案和解析>>

同步練習冊答案