3.已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={4^{a_n}}+2{a_n}$求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (Ⅰ)通過設(shè)數(shù)列{an}的公差為d,利用a1,a3,a9成等比數(shù)列,計(jì)算即可;
(Ⅱ)通過an=n,可得bn=4n+2n,分類計(jì)算即可.

解答 解:(Ⅰ)設(shè)數(shù)列{an}的公差為d,
∵a1=1,∴a3=1+2d,a9=1+8d,
又∵a1,a3,a9成等比數(shù)列,
∴(1+2d)2=1+8d,
解得:d=1或d=0(舍),
∴數(shù)列{an}的通項(xiàng)an=1+(n-1)=n;
(Ⅱ)∵an=n,
∴${b_n}={4^{a_n}}+2{a_n}$=4n+2n,
∴Sn=b1+b2+…+bn
=(4+42+…+4n)+2(1+2+…+n)
=$\frac{4(1-{4}^{n})}{1-4}$+n2+n
=$\frac{1}{3}$•4n+1+n2+n-$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng),考查求數(shù)列的和,考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=$\frac{1+2i}{{i}^{2}}$則它的模|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知O為坐標(biāo)原點(diǎn),向量$\overrightarrow{OA}$=(sinα,1),$\overrightarrow{OB}$=(cosα,0),$\overrightarrow{OC}$=(-sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且$\overrightarrow{AB}$=$\overrightarrow{BP}$.
(1)若O,P,C三點(diǎn)共線,求以線段OA,OB為鄰邊的平行四邊形的對(duì)角線長(zhǎng);
(2)記函數(shù)f(α)=$\overrightarrow{BP}$•$\overrightarrow{CA}$,α∈(-$\frac{π}{8}$,$\frac{π}{2}$),已知:sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$).試求函數(shù)f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{x}$(x≠0),數(shù)列{an}、{bn}滿足a1=1,b1=1,且對(duì)任意n∈N+,均有an+1=$\frac{{a}_{n}f({a}_{n})}{f({a}_{n})+2}$,bn+1-bn=$\frac{1}{{a}_{n}}$.
(1)證明:數(shù)列{$\frac{1}{{a}_{n}}$}的等差數(shù)列;
(2)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(3)對(duì)于λ∈[0,1],是否存在k∈N+,使得當(dāng)n≥k,當(dāng)bn≥(1-λ)f(an)恒成立?若存在,試求k的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知α為銳角,向量$\overrightarrow{a}$=(cos(α-$\frac{π}{6}$),sin(α-$\frac{π}{6}$)),$\overrightarrow$=($\sqrt{3}$,-1),且$\overrightarrow{a}•\overrightarrow$=$\frac{2}{7}$.
(1)若β為銳角,且cos(α+β)=-$\frac{11}{14}$,求角β;
(2)求$\frac{sin2α-2\sqrt{3}co{s}^{2}α}{1+cos2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.極限$\underset{lim}{x→0}$$\frac{tan2x}{3x}$的值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用數(shù)學(xué)歸納法證明不等式1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$>$\frac{127}{64}$(n∈N+)成立,其初始值至少應(yīng)取8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲,乙兩選手進(jìn)行象棋比賽,假設(shè)每局比賽甲獲勝的概率為$\frac{2}{3}$,乙勝概率為$\frac{1}{3}$,若采取3局2勝制,甲獲勝的概率是$\frac{20}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)集合P={x||x-5|≤3},Q={x|5-m≤x≤5+m,m>0}
(1)若“x∈P”是“x∈Q”的充分不必要條件,求實(shí)數(shù)m的取值范圍;
(2)若“x∈P”是“x∈Q”的充要條件,求實(shí)數(shù)m的取值范圍;
(3)若“x∈P”是“x∈Q”的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案