分析 求出函數(shù)的導數(shù),利用已知條件轉(zhuǎn)化為導函數(shù)的零點問題,求解即可.
解答 解:函數(shù)f(x)=x3+ax2-2x+5,
可得f′(x)=3x2+2ax-2,
函數(shù)f(x)=x3+ax2-2x+5在區(qū)間($\frac{1}{3},\frac{1}{2}$)上既不是單調(diào)遞增函數(shù),也不是單調(diào)遞減函數(shù),
可知導函數(shù)在區(qū)間內(nèi)有零點,
由f′($\frac{1}{3}$)f′($\frac{1}{2}$)<0,
即:[3×$(\frac{1}{3})^{2}+2a×\frac{1}{3}-2$][3×${(\frac{1}{2})}^{2}+2a×\frac{1}{2}-2$]<0,
得:a∈($\frac{5}{4},\frac{5}{2}$).
實數(shù)a的取值范圍:($\frac{5}{4},\frac{5}{2}$).
點評 本題考查函數(shù)的極值以及函數(shù)的單調(diào)性的判斷,導數(shù)的綜合應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | -$\sqrt{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com