12.如圖,根據(jù)樣本的頻率分布直方圖,估計(jì)樣本的中位數(shù)是( 。
A.10B.12C.13D.16

分析 中位數(shù)是把頻率分布直方圖分成兩個(gè)面積相等部分的平行于Y軸的直線橫坐標(biāo),由此利用樣本的頻率分布直方圖,能估計(jì)樣本的中位數(shù).

解答 解:由樣本的頻率分布直方圖,得:
[5,10)區(qū)間內(nèi)的頻率為0.04×5=0.2,
[10,15)區(qū)間內(nèi)的頻率為0.1×5=0.5,
∴估計(jì)樣本的中位數(shù)為:10+$\frac{0.5-0.2}{0.5}×5$=13.
故選:C.

點(diǎn)評(píng) 本題考查樣本中位數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的正視圖如圖1所示,則在圖2①②③④中,所有可能成為這個(gè)三棱錐的俯視圖的是( 。
A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖.下面關(guān)于這兩位同學(xué)的數(shù)學(xué)成績的分析中,正確的共有( 。﹤(gè).

①甲同學(xué)的成績折線圖具有較好的對(duì)稱性,與正態(tài)曲線相近,故而平均成績?yōu)?30分;
②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間[110,120]內(nèi);
③乙同學(xué)的數(shù)學(xué)成績與考試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);
④乙同學(xué)在這連續(xù)九次測驗(yàn)中的最高分與最低分的差超過40分.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=ax3+3x,其圖象在點(diǎn)(1,f(1))處的切線l與直線x-3y-7=0垂直,則直線l與y軸的交點(diǎn)坐標(biāo)為(  )
A.(0,1)B.(0,2)C.(0,3)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某賓館在裝修時(shí),為了美觀,欲將客房的窗戶設(shè)計(jì)成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個(gè)區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計(jì)劃將矩形ABCD區(qū)域設(shè)計(jì)為可推拉的窗口.
(1)若窗口ABCD為正方形,且面積大于$\frac{1}{4}$m2(木條寬度忽略不計(jì)),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={0,1,2},B={x|x(x-2)<0},則A∩B( 。
A.{0,1,2}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=axlnx+be-x,曲線y=f(x)在(1,f(1))處的切線方程為y=(1+e-1)x-1-2e-1
(1)求a,b;
(2)求證:f(x)>-1-2e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位),則( 。
A.z的實(shí)部為2B.z的虛部為iC.$\overline z$=1+iD.|z|=$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x,x∈R,將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長度,得到函數(shù)g(x)的圖象,則g(x)在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上的最小值為( 。
A.0B.$-\frac{{\sqrt{3}}}{2}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案