12.已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q為真,求x的取值范圍;
(2)若¬q是¬p的充分不必要條件,求實數(shù)m的取值范圍.

分析 (1)分別解出關(guān)于p,q的不等式,根據(jù)p∧q為真,p,q都為真,求出x的范圍即可;
(2)由?q是?p的充分不必要條件,即?q⇒?p,其逆否命題為p⇒q,求出m的范圍即可.

解答 解(1)由x2-7x+10<0,解得2<x<5,所以p:2<x<5;
又x2-4mx+3m2<0,因為m>0,解得m<x<3m,所以q:m<x<3m.
當m=4時,q:4<x<12,又p∧q為真,p,q都為真,所以4<x<5.
(2)由?q是?p的充分不必要條件,即?q⇒?p,?p≠>?q,
其逆否命題為p⇒q,q≠>p,
由(1)p:2<x<5,q:m<x<3m,
所以$\left\{\begin{array}{l}m≤2\\ 3m≥5\\ m>0\end{array}\right.$,即:$\frac{5}{3}≤m≤2$.

點評 本題考查了充分必要條件,考查復合命題的判斷,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.在數(shù)2與1之間插入10個數(shù),使這12個數(shù)成遞減的等差數(shù)列,則公差為-$\frac{1}{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$sinαcosα=\frac{1}{8}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,則sinα-cosα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知拋物線y=4ax2,則其準線方程是( 。
A.y=-$\frac{1}{16a}$B.x=-aC.y=±$\frac{1}{16a}$D.x=±a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{3}{5}$sinx+sinβcosx+1(β位常數(shù)),且f(0)=$\frac{9}{5}$.
(1)求sinβ與cos2β的值
(2)求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.△ABC中,∠C=90°,點M在邊BC上,且滿足BC=3BM,若$sin∠BAM=\frac{1}{5}$,則sin∠BAC=$\frac{{\sqrt{15}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}滿足an+1=an+2n且a1=2,則數(shù)列{an}的通項公式an=n2-n+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點,AB=$\sqrt{2}$,AA1=AC=CB=1.
(1)求異面直線AE與BC1所成角的余弦值;
(2)求二面角D-A1C-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某校從參加高一年級期末考試的學生中抽出40名學生,將其成績分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全頻率分布直方圖;
(2)估計這次考試的平均分和中位數(shù)(精確到0.01);
(3)從成績是40~50分及90~100分的學生中選兩人,記他們的成績?yōu)閤,y,求滿足“|x-y|>10”的概率.

查看答案和解析>>

同步練習冊答案