3.在等差數(shù)列{an}中,${a_9}=\frac{1}{2}{a_{12}}+6$,則數(shù)列{an}的前11項(xiàng)和S11=(  )
A.132B.66C.48D.24

分析 利用等差數(shù)列的通項(xiàng)公式求出a1+5d=12,由此能求出數(shù)列{an}的前11項(xiàng)和S11

解答 解:等差數(shù)列{an}中,${a_9}=\frac{1}{2}{a_{12}}+6$,
∴${a}_{1}+8d=\frac{1}{2}({a}_{1}+11d)+6$,
解得a1+5d=12,
∴數(shù)列{an}的前11項(xiàng)和S11=$\frac{11}{2}({a}_{1}+{a}_{11})$=$\frac{11}{2}(2{a}_{1}+10d)$=132.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列的前11項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|≠0,且關(guān)于x的函數(shù)f(x)=2x3-3|$\overrightarrow{a}$|x2+6$\overrightarrow{a}$•$\overrightarrow$x+5在實(shí)數(shù)集R上有極值,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的取值范圍是( 。
A.($\frac{π}{3}$,π)B.($\frac{π}{3}$,π]C.[$\frac{π}{3}$,π]D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABC的三邊長(zhǎng)a,b,c和面積S滿足S=$\frac{1}{2}$[c2-(a-b)2].
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)數(shù)列{an}的首項(xiàng)a1=$\frac{3}{2}$,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3(n∈N*),則滿足$\frac{18}{17}$<$\frac{{S}_{2n}}{{S}_{n}}$<$\frac{10}{9}$的n值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{{e}^{2}-1}{x}$,x≠0.其中e=2.71828…
(1)設(shè)h(x)=f(x)+$\frac{1}{x}$,求函數(shù)h(x)在[$\frac{1}{2}$,2]上的值域;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|f(x)-1|<a成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y=1上,M點(diǎn)滿足$\overrightarrow{MB}$∥$\overrightarrow{OA}$,$\overrightarrow{MA}$•$\overrightarrow{AB}$=$\overrightarrow{MB}$•$\overrightarrow{BA}$,M點(diǎn)的軌跡方程為( 。
A.y2=4xB.x2=-4yC.x2+4y2=1D.x2-4y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow a=(x-1,2),\overrightarrow b=(2,1)$,則$\overrightarrow a⊥\overrightarrow b$的充要條件是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.甲、乙兩名運(yùn)動(dòng)員在某項(xiàng)測(cè)試中的6次成績(jī)的莖葉圖如圖所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的平均數(shù),s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的方差,則有( 。
A.${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$B.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$
C.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$D.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知矩形ABCD和矩形ADEF所在平面互相垂直,點(diǎn)M,N分別在對(duì)角線BD、AE上,且BM=$\frac{1}{3}$BD,AN=$\frac{1}{3}$AE,求證:MN∥平面CDE.

查看答案和解析>>

同步練習(xí)冊(cè)答案