7.已知函數(shù)$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$
(1)求函數(shù)f(x)的最小正周期和對稱軸方程;
(2)將f(x)的圖象左移$\frac{π}{12}$個單位,再向上移1個單位得到g(x)的圖象,試求g(x)在區(qū)間$[0,\frac{π}{2}]$的值域.

分析 (1)由題意利用兩角和差的正弦公式化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的圖象的對稱性求得函數(shù)的圖象的對稱軸方程.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得g(x)在區(qū)間$[0,\frac{π}{2}]$的值域.

解答 解:(1)函數(shù)$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
故它的周期為$\frac{2π}{2}$=π,令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
故函數(shù)的圖象的對稱軸方程為:$x=\frac{kπ}{2}+\frac{π}{6}$,k∈Z.
(2)將f(x)的圖象左移$\frac{π}{12}$個單位,可得y=2sin[2(x+$\frac{π}{12}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{3}$)的圖象;
再把所得圖象向上移1個單位得到g(x)=2sin(2x+$\frac{π}{3}$)+1 的圖象.
由x∈區(qū)間$[0,\frac{π}{2}]$,可得 2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],故sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],2sin(2x+$\frac{π}{3}$)∈[-$\sqrt{3}$,2],
故g(x)∈[1-$\sqrt{3}$,3].

點評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的圖象的對稱性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}2x+y-6≥0\\ x+2y-6≤0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中:
①命題“若x2-5x+6=0,則x=2或x=3”的逆否命題為“若x≠2或x≠3,則x2-5x+6≠0”.
②命題p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”;
③回歸直線方程一定過樣本中心點($\overline{x}$,$\overline{y}$).
其中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,2).
(1)求$|{\overrightarrow a-\overrightarrow b}|$;
(2)k為何值時,k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$互相垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個袋子中有號碼為1,2,3,4大小相同的4個小球,現(xiàn)從中任意取出一個球,取出后再放回,然后再從
袋中任取一個球,則取得兩個號碼之和為5的概率為( 。
A.$\frac{7}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={x||x+1|<3,x∈Z},則集合A的真子集的個數(shù)為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點$M({1,2\sqrt{2}})$作直線交拋物線x2=2py(p>0)于A、B且M為A、B中點,過A、B分別作拋物線切線,兩切線交于點N,若N在直線y=-2p上,則p=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}是等比數(shù)列且an>0,a1=$\frac{1}{2}$,前n項和為Sn,S3+a3,S5+a5,S4+a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點;
②要得到函數(shù)y=sinx的圖象,只需將函數(shù)$y=cos(x-\frac{π}{3})$的圖象向左平移$\frac{π}{6}$個單位;
③若m≥-1,則函數(shù)$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城為R;
④“a=1”是“函數(shù)f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定義域上是奇函數(shù)”的充分不必要條件;
⑤已知{an}為等差數(shù)列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n項和Sn有最大值,那么當(dāng)Sn取得最小正值時,n=20.
其中正確命題的序號是①③④.

查看答案和解析>>

同步練習(xí)冊答案