12.在底面直徑為4的圓柱形容器中,放入一個半徑為1的冰球,當(dāng)冰球全部融化后,容器中液面的高度為0.3(相同體積的冰與水的質(zhì)量比為9:10)

分析 半徑為2的冰球的體積為$\frac{4}{3}$π,水的體積為$\frac{6}{5}$π,再利用體積公式,即可求出冰球全部溶化后,容器中液面的高度.

解答 解:半徑為1的冰球的體積為$\frac{4}{3}$π,水的體積為$\frac{6}{5}$π,
設(shè)冰球全部溶化后,容器中液面的高度為h,則π×22h=$\frac{6}{5}$π,
∴h=0.3.
故答案為:0.3.

點評 本題考查冰球全部溶化后,容器中液面的高度,考查體積公式,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的函數(shù)$f(x)=-\frac{1}{3}x_{\;}^3+bx_{\;}^2+cx+bc$.
(1)如果函數(shù)$f(x)在x=1處有極值-\frac{4}{3}$,求b、c;
(2)設(shè)當(dāng)x∈($\frac{1}{2}$,3)時,函數(shù)y=f(x)-c(x+b)的圖象上任一點P處的切線斜率為k,若k≤2,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題P:?x∈R,x2>lg1,則P的否定¬P為( 。
A.?x0∈R,${{x}_{0}}^{2}$≤lg1B.?x0∈R,${{x}_{0}}^{2}$<lg1
C.?x∈R,${{x}_{0}}^{2}$≤lg1D.$?{x_{\;}}∈R,x_{\;}^2<lg1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,且△PAD是邊長為4的正三角形,M為PD的中點,底面ABCD是矩形,CD=3.   
(1)求異面直線PB與CM所成的角α的余弦值;
(2)求直線AC與平面PCM所成的角β的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線l將圓x2+y2-2x-4y=0平分,且與直線$\frac{x}{2}$-$\frac{y}{4}$=1平行,則直線l的方程是( 。
A.2x-y-4=0B.x+2y-3=0C.2x-y=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.有下列敘述:
①若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=-3;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③已知f(x)是定義在R上的不恒為0的函數(shù),若a,b是任意的實數(shù),都有f(a•b)=f(a)+f(b),則y=f(x)的偶函數(shù);
④函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù);
⑤已知A和B是單位圓O上的兩點,∠AOB=$\frac{2}{3}$π,點C在劣弧$\widehat{AB}$上,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中,x,y∈R,則x+y的最大值是2;
以上敘述正確的序號是①③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某學(xué)校擬在廣場上建造一個矩形花園,如圖所示,中間是完全相同的兩個橢圓型花壇,每個橢圓型花壇的面積均為216π平方米,兩個橢圓花壇的距離是1.5米.整個矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)
(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當(dāng)橢圓形花壇的長軸長為多少米時,所建矩形花園占地最少?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l1和l2在y軸上的截距相等,且它們的斜率互為相反數(shù).若直線l1過點P(1,3),且點Q(2,2)到直線l2的距離為$\sqrt{5}$,求直線l1和直線l2的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)y=f(x)的定義域為D,值域為A,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍是A,那么稱x=g(x)是函數(shù)y=f(x)的一個等值域變換.
(1)已知函數(shù)f(x)=x2-x+1,x∈B,x=g(t)=log2t,t∈C.
1°若B,C分別為下列集合時,判斷x=g(t)是不是函數(shù)y=f(x)的一個等值域變換:①B=R,C=(1,+∞);②B=R,C=(2,+∞)
2°若B=[0,4],C=[a,b](0<a<b),若x=g(t)是函數(shù)y=f(x)的一個等值域變換,求a,b滿足的條件;
(2)設(shè)f(x)=log2x的定義域為x∈[2,8],已知x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域為R,求實數(shù)m,n的值.

查看答案和解析>>

同步練習(xí)冊答案