7.直線l將圓x2+y2-2x-4y=0平分,且與直線$\frac{x}{2}$-$\frac{y}{4}$=1平行,則直線l的方程是( 。
A.2x-y-4=0B.x+2y-3=0C.2x-y=0D.x-2y+3=0

分析 圓x2+y2-2x-4y=0的圓心為(1,2),設直線方程為$\frac{x}{2}$-$\frac{y}{4}$=b,利用直線l將圓x2+y2-2x-4y=0平分,求出b,即可求出直線l的方程.

解答 解:圓x2+y2-2x-4y=0的圓心為(1,2)
設直線方程為$\frac{x}{2}$-$\frac{y}{4}$=b,
∵直線l將圓x2+y2-2x-4y=0平分,
∴b=$\frac{1}{2}$-$\frac{1}{2}$=0,
∴直線l的方程是2x-y=0,
故選:C.

點評 本題考查直線與圓的位置關系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若函數(shù)f(x)的最小值為0,求a的值.
(2)證明:ex+(lnx-1)sinx>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設l,m是兩條不同的直線,α,β是兩個不重合的平面,給出下列四個命題:
①若α∥β,l⊥α,則l⊥β;
②若l∥m,l?α,m?β,則α∥β;
③若m⊥α,l⊥m,則l∥α;
④若l∥α,l⊥β,則α⊥β.
其中真命題的序號有①④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+a的零點為x0,曲線f(x)在點(x0,f(x0))處的切線為y=g(x).
(1)證明:f(x)≤g(x);
(2)若關于x的方程f(x)=a有兩個不等實根m,n,p為f(x)較大的零點,證明:|m-n|<p-$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知f(x)=ln(x+$\frac{4}{x}-a$),若對任意的m∈R,方程f(x)=m均為正實數(shù)解,則實數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在底面直徑為4的圓柱形容器中,放入一個半徑為1的冰球,當冰球全部融化后,容器中液面的高度為0.3(相同體積的冰與水的質(zhì)量比為9:10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1$的一條漸近線方程為3x-2y=0.F1、F2分別是雙曲線的左、右焦點,過點F2的直線與雙曲線右支交于A,B兩點.若|AB|=10,則△F1AB的周長為( 。
A.18B.26C.28D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(a-2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知g(x)=x2-2x-3,f(x)=ax+2.(a>0).
(1)若對于x∈[3,6]時,總存在x0,使得f(x0)=g(x0),求a的取值范圍;
(2)若g(x-b)=0在(-1,6)上恒有一個實數(shù)根.求b的取值范圍.

查看答案和解析>>

同步練習冊答案