10.已知雙曲線的離心率e=$\frac{5}{3}$,點(0,5)為其一個焦點,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{25}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1

分析 設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),運(yùn)用離心率公式和a,b,c的關(guān)系,解方程可得a=3,b=4,進(jìn)而得到所求雙曲線的方程.

解答 解:設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),
由題意可得e=$\frac{c}{a}$=$\frac{5}{3}$,c=5,
可得a=3,b=$\sqrt{{c}^{2}-{a}^{2}}$=4,
即有雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.
故選:D.

點評 本題考查雙曲線的方程的求法,注意運(yùn)用待定系數(shù)法,考查離心率公式的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2(n-1)}$,(n∈N*,n≥2)
(1)求證:數(shù)列{$\frac{n}{{a}_{n}}$+1}為等比數(shù)列并求{an}的通項公式;
(2)若bn=(2n-1)an,數(shù)列{bn}的前n項和為Sn,數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和為Tn,求證:an≤Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}-\frac{y^2}{16}=1$,則該雙曲線的焦點坐標(biāo)為,(±$2\sqrt{5}$,0)漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點Q(其中O為坐標(biāo)原點).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知某廠每天的固定成本是20000元,每天最大規(guī)模的產(chǎn)品量是350件.每生產(chǎn)一件產(chǎn)品,成本增加100元,生產(chǎn)x件產(chǎn)品的收入函數(shù)是R(x)=-$\frac{1}{2}$x2+400x,記L(x),P(x)分別為每天的生產(chǎn)x件產(chǎn)品的利潤和平均利潤 (平均利潤=$\frac{總利潤}{總產(chǎn)量}$).
(1)每天生產(chǎn)量x為多少時,利潤L(x)有最大值?;
(2)每天生產(chǎn)量x為多少時,平均利潤P(x)有最大值?若該廠每天生產(chǎn)的最大規(guī)模為180件,那么每天生產(chǎn)量x為多少時,平均利潤P(x)有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,設(shè)a=f(3),$b=f(-\sqrt{2})$,c=f(2),則a,b,c大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$所表示的區(qū)域為D,M(x,y)是區(qū)域D內(nèi)的點,點A(-1,2),則z=$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,已知平面α∩平面β=l,α⊥β.A、B是直線l上的兩點,C、D是平面β內(nèi)的兩點,且DA⊥l,CB⊥l,DA=4,AB=6,CB=8.P是平面α上的一動點,且有∠APD=∠BPC,則四棱錐P-ABCD體積的最大值是( 。
A.48B.16C.$24\sqrt{3}$D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|$\frac{\sqrt{2}}{2}$≤2x≤$\sqrt{2}}\right\}$,B={x|lnx<0},則A∩B=( 。
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

同步練習(xí)冊答案