20.設(shè)集合A={x|$\frac{\sqrt{2}}{2}$≤2x≤$\sqrt{2}}\right\}$,B={x|lnx<0},則A∩B=( 。
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:2${\;}^{-\frac{1}{2}}$≤2x≤2${\;}^{\frac{1}{2}}$,即-$\frac{1}{2}$≤x≤$\frac{1}{2}$,
∴A=[-$\frac{1}{2}$,$\frac{1}{2}$],
由B中不等式變形得:lnx<0=ln1,即0<x<1,
∴B=(0,1),
則A∩B=(0,$\frac{1}{2}$],
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線的離心率e=$\frac{5}{3}$,點(diǎn)(0,5)為其一個(gè)焦點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{25}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)棱OB⊥底面ABCD,且側(cè)棱OB的長(zhǎng)是2,點(diǎn)E,F(xiàn),G分別是AB,OD,BC的中點(diǎn).
(Ⅰ)證明:EF∥平面BOC;
(Ⅱ)證明:OD⊥平面EFG;
(Ⅲ)求三棱錐G-EOF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若P=|x|x2-2x-3<0},Q={x|x>a},且P∩Q=P,則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5月的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如表資料:
日期3月1日3月2日3月3日3月4日3月5日
晝夜溫差(.C)101113128
發(fā)芽數(shù)(顆)2325302616
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率
(2)請(qǐng)根據(jù)3月2日至3月4日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所需要檢驗(yàn)的數(shù)據(jù)誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試用3月1日與3月5日的兩組數(shù)據(jù)檢驗(yàn),問(wèn)(2)中所得的線性回歸方程是否可靠?
(參考公式:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}$或$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列敘述正確的個(gè)數(shù)是( 。
①若命題p:?x0∈R,x02-x0+1=0,則¬p:?x∈R,x2-x+1>0;
②已知向量$\overrightarrow{a}$,$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$<0是$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角的充要條件;
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
④在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“tanx•cosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)全集U=R,已知集合A={-2,-1,0,1,2,3},B={x|$\frac{3}{x-1}$+1≥0},則集合A∩∁UB=( 。
A.{-1,0,1}B.{-1,0}C.{-2,-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某火鍋店為了了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(Ⅰ)求y關(guān)于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(Ⅱ)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中,真命題是( 。
A.“a≤b”是“a+c≤b+c”的必要不充分條件
B.如果空間兩條直線不相交,則這兩條直線平行
C.設(shè)命題p:?x∈R,x2+1>0,則¬p為?x0∈R,x02+1<0
D.“若α=$\frac{π}{4}$,則tanα=1”的逆否命題為“若tanα≠1,則α≠$\frac{π}{4}$”

查看答案和解析>>

同步練習(xí)冊(cè)答案