分析 (1)(a2+b2-c2)sinA=ab(2sinB+sinC),利用正弦定理可得:(a2+b2-c2)a=ab(2b+c),化簡再利用余弦定理即可得出.
(2)由余弦定理可得:${a}^{2}=^{2}+{c}^{2}-2bccos\frac{2π}{3}$,再利用基本不等式的性質即可得出.
解答 解:(1)∵(a2+b2-c2)sinA=ab(2sinB+sinC),利用正弦定理可得:(a2+b2-c2)a=ab(2b+c),化為b2+c2-a2=-bc.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$-\frac{1}{2}$,
A∈(0,π),∴$A=\frac{2π}{3}$.
(2)由余弦定理可得:${a}^{2}=^{2}+{c}^{2}-2bccos\frac{2π}{3}$,
∴1=(b+c)2-bc,即(b+c)2=1+bc≤1+$(\frac{b+c}{2})^{2}$,b+c>a=1.
解得:1<b+c≤$\frac{2\sqrt{3}}{3}$.
∴b+c的取值范圍是$(1,\frac{2\sqrt{3}}{3}]$.
點評 本題考查了正弦定理余弦定理、三角函數(shù)求值、基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3,4} | B. | {2} | C. | {2,4} | D. | {1,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $1-\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $1-\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com