15.下列說法:
①獨(dú)立性檢驗(yàn),適用于檢查兩個變量彼此相關(guān)或相互獨(dú)立的假設(shè)檢驗(yàn);
②設(shè)有一個回歸方程$\widehat{y}$=3-5x,變量x增加一個單位時,y平均增加5個單位;
③相關(guān)系數(shù)r越接近1,說明模型的擬和效果越好;
其中錯誤的個數(shù)是( 。
A.1B.2C.3D.0

分析 根據(jù)獨(dú)立性檢驗(yàn)的定義,可判斷①;根據(jù)回歸系數(shù)的幾何意義,可判斷②;根據(jù)相關(guān)系數(shù)的幾何意義,可判斷③.

解答 解:①獨(dú)立性檢驗(yàn),適用于檢查兩個變量彼此相關(guān)或相互獨(dú)立的假設(shè)檢驗(yàn);故正確;
②設(shè)有一個回歸方程$\widehat{y}$=3-5x,變量x增加一個單位時,y平均減少5個單位;故錯誤;
③相關(guān)系數(shù)r越接近1,說明模型的擬和效果越好;故正確;
故選:A

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了獨(dú)立性檢驗(yàn)的定義,回歸系數(shù)的幾何意義,相關(guān)系數(shù)的幾何意義,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三次函數(shù)y=f(x)=ax3-1在(-∞,+∞)內(nèi)是減函數(shù),則( 。
A.a=1B.a=2C.a≤0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線x2-4y2=1的離心率為( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的離心率$\frac{{\sqrt{5}}}{5}$,左焦點(diǎn)在直線2x-y+2=0上.
(1)求橢圓方程;
(2)若AB是過橢圓的一個焦點(diǎn)F的弦,AB的傾斜角為$\frac{π}{4}$,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=aln(x+1)-x2在(0,2)內(nèi)任取兩個實(shí)數(shù)m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.按某種規(guī)定,一個50人的樣本頻率分布直方圖如圖.第一組的頻率面積為0.04,若前三組的頻率與后三組的頻率各自構(gòu)成等差數(shù)列,且公差為相反數(shù).
(1)求第三組的人數(shù);
(2)若從50人中隨機(jī)選出兩人做代表,這兩人分別來自第三組和第四組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2-4x-2y-20=0及直線l:mx-y-m+3=0(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C總相交;
(2)求直線l被圓C截得的弦長的最小值及此時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{45}+\frac{{y}^{2}}{^{2}}$=1(b>0)焦點(diǎn)分別是F1和F2,過原點(diǎn)O作直線與橢圓相交于A,B兩點(diǎn),△ABF2面積最大值為18,則橢圓短軸長( 。
A.6B.12C.18D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)集合M={(x,y)|y=$\sqrt{16-{x}^{2}}$,y≠0},N={(x,y)|y=x+a},若中M∩N有兩個元素,則實(shí)數(shù)a的取值范圍為(4,4$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊答案