【題目】已知橢圓的一個(gè)焦點(diǎn)為,且在橢圓E上.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知垂直于x軸的直線交E于A、B兩點(diǎn),垂直于y軸的直線交E于C、D兩點(diǎn),與的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)存在,兩定點(diǎn),
【解析】
(1)利用焦點(diǎn)為,且在橢圓E上,利用橢圓定義,即得解;
(2)設(shè)出A,B,C,D坐標(biāo),利用,得到P在雙曲線上,結(jié)合雙曲線定義,可得.
(1)由題意得,,橢圓的兩焦點(diǎn)為和,
因?yàn)辄c(diǎn)在橢圓C上,
所以根據(jù)橢圓定義可得:,
所以,所以,
所以橢圓E的標(biāo)準(zhǔn)方程為.
(2)設(shè),
則,
消去,得,
所以點(diǎn)P在雙曲線上,
因?yàn)?/span>T的兩個(gè)焦點(diǎn)為,實(shí)軸長(zhǎng)為,
所以存在兩定點(diǎn),
使得為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面PCD,底面ABCD為梯形,,,M為PD的中點(diǎn),過(guò)A,B,M的平面與PC交于N.,,,.
(1)求證:N為PC中點(diǎn);
(2)求證:平面PCD;
(3)T為PB中點(diǎn),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)書(shū)九章》是中國(guó)南宋時(shí)期杰出數(shù)學(xué)家秦九韶的著作,全書(shū)十八卷共八十一個(gè)問(wèn)題,分為九類(lèi),每類(lèi)九個(gè)問(wèn)題,《數(shù)書(shū)九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求積”中提出了已知三角形三邊,,求面積的公式,這與古希臘的海倫公式完成等價(jià),其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí),一為從隅,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即.現(xiàn)有滿(mǎn)足,且的面積,請(qǐng)運(yùn)用上述公式判斷下列命題正確的是
A.周長(zhǎng)為
B.三個(gè)內(nèi)角,,成等差數(shù)列
C.外接圓直徑為
D.中線的長(zhǎng)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將折起,使得平面平面BDEC(圖二).
(1)若F是AB的中點(diǎn),求證:平面ADE.
(2)P是AC上任意一點(diǎn),求證:平面平面PBE.
(3)P是AC上一點(diǎn),且平面PBE,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類(lèi)》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類(lèi)明確的垃圾桶”的人數(shù)最多
C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的右焦點(diǎn)坐標(biāo)為,且點(diǎn)在C上.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線l與C交于M,N兩點(diǎn),P為線段MN的中點(diǎn),A為C的左頂點(diǎn),求直線AP的斜率k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com