17.已知角α的終邊經(jīng)過(guò)點(diǎn)P($\sqrt{5}$,-2),則sinα+tanα=$-\frac{2}{3}$$-\frac{2\sqrt{5}}{5}$.

分析 根據(jù)三角函數(shù)的定義進(jìn)行求解即可.

解答 解:∵角α的終邊經(jīng)過(guò)點(diǎn)P($\sqrt{5}$,-2),
∴r=$\sqrt{(\sqrt{5})^{2}+(-2)^{2}}$=$\sqrt{5+4}=\sqrt{9}$=3,
則sinα+tanα=$\frac{-2}{3}+\frac{-2}{\sqrt{5}}$=$-\frac{2}{3}$$-\frac{2\sqrt{5}}{5}$,
故答案為:$-\frac{2}{3}$$-\frac{2\sqrt{5}}{5}$

點(diǎn)評(píng) 本題主要考查三角函數(shù)值的求解,根據(jù)三角函數(shù)的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,BC=3,CD=2,AC=4,∠ACB=∠ACD=$\frac{π}{3}$,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(!)求PA的長(zhǎng);
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在Rt△ABC中,AC⊥BC,D是AB的中點(diǎn),F(xiàn)是BC上一點(diǎn),AF交CD于點(diǎn)E,且CE=DE,∠BCD=30°,現(xiàn)將△ACD沿CD折起,折成鈍二面角A-CD-B.
(1)求證:平面AEF⊥平面CBD;
(2)當(dāng)AC⊥BD時(shí),求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在三棱錐P-ABC中,D是線段BC的中點(diǎn),△ABC和△PAD所在的平面互相垂直,PA⊥AD,AF⊥PB,AB=2,AC=4,AD=$\sqrt{3}$,∠BAC=120°.
(1)證明:PB⊥AD;
(2)若∠AFD的大小為45°,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知角α的終邊過(guò)點(diǎn)P(a,-2a)(a≠0),求tanα,sinα+cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,BD⊥AC于O,且AA1=OC=2OA=4,點(diǎn)M是棱CC1上一點(diǎn).
(Ⅰ)如果過(guò)A1,B1,O的平面與底面ABCD交于直線l,求證:l∥AB;
(Ⅱ)當(dāng)M是棱CC1中點(diǎn)時(shí),求證:A1O⊥DM;
(Ⅲ)設(shè)二面角A1-BD-M的平面角為θ,當(dāng)|cosθ|=$\frac{2\sqrt{5}}{25}$時(shí),求CM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在(29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出500件,量其內(nèi)徑尺寸,結(jié)果如表:
甲廠:
分組[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
頻數(shù)1530125198773520
乙廠:
分組[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
頻數(shù)407079162595535
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問(wèn)是否有99.9%的把握認(rèn)為“生產(chǎn)的零件是否為優(yōu)質(zhì)品與不同的分廠有關(guān)”.
甲 廠    乙 廠  合計(jì)
優(yōu)質(zhì)品
  非優(yōu)質(zhì)品
   合計(jì)
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(x2≥x)0.100    0.050    0.025    0.010     0.001
x 2.706    3.841    5.024     6.635    10.828
(Ⅱ)現(xiàn)用分層抽樣方法(按優(yōu)質(zhì)品和非優(yōu)質(zhì)品分二層)從兩廠中各抽取五件零件,然后從每個(gè)廠的五件產(chǎn)品中各抽取兩件,將這四件產(chǎn)品中的優(yōu)質(zhì)品數(shù)記為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若P是曲線C2上的一點(diǎn),過(guò)點(diǎn)P向曲線C1引切線,切點(diǎn)為Q,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax-1
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案