3.某公司為了增加旅游效益,準(zhǔn)備在下屬的某生態(tài)園內(nèi)選定1號(hào)到7號(hào)7個(gè)并排的大棚,種植包括草莓和葡萄在內(nèi)的7種不同的水果,每個(gè)大棚只能種植一種水果供游客進(jìn)行自摘.
(1)求草莓只能種植在3號(hào)或4號(hào)大棚,且葡萄不能在2號(hào)或5號(hào)大棚種植的方法種數(shù);
(2)求種植葡萄和草莓之間恰好間隔3個(gè)大棚的方法種數(shù).

分析 (1)先種植葡萄和草莓,再種植其它品種,利用排列組合知識(shí)可得結(jié)論;
(2)先選出3個(gè)品種種植,有A33=6種;與葡萄和草莓排列有2種方法,再與其它兩個(gè)品種全排,有A33=6種,利用乘法原理,可得結(jié)論.

解答 解:(1)草莓只能種植在3號(hào)或4號(hào)大棚,且葡萄不能在2號(hào)或5號(hào)大棚種植的方法種數(shù)為C21C41A55=960;
(2)種植葡萄和草莓之間恰好間隔3個(gè)大棚,先選出3個(gè)品種種植,有A33=6種;與葡萄和草莓排列有2種方法,再與其它兩個(gè)品種全排,有A33=6種,
∴種植葡萄和草莓之間恰好間隔3個(gè)大棚的方法種數(shù)為6×2×6=72.

點(diǎn)評(píng) 本題考查排列、組合知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.用反證法證明命題“若a,b∈R,且a2+b2=0,則a=b=0”時(shí),則假設(shè)內(nèi)容是a≠0或b≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一個(gè)長(zhǎng)椅上共有10個(gè)座位,現(xiàn)有4人去坐,其中恰有5個(gè)連續(xù)空位的坐法共有(  )
A.240種B.600種C.408種D.480種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,已知定點(diǎn)F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),動(dòng)點(diǎn)P滿足|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2,設(shè)點(diǎn)P的曲線為C,直線l:y=kx+m與C交于A、B兩點(diǎn):
(1)寫出曲線C的方程,并求出曲線C的軌跡;
(2)當(dāng)m=1,求實(shí)數(shù)k的取值范圍;
(2)證明:存在直線l,滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|,并求出實(shí)數(shù)k、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系中,已知點(diǎn)A($\frac{1}{2}$,0),點(diǎn)B為直線x=-$\frac{1}{2}$上的動(dòng)點(diǎn),點(diǎn)C是線段AB與y軸的交點(diǎn),點(diǎn)M滿足$\overrightarrow{BM}$•$\overrightarrow{OC}$=0,$\overrightarrow{CM}$•$\overrightarrow{AB}$=0.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)設(shè)點(diǎn)P是軌跡E上的動(dòng)點(diǎn),點(diǎn)R、N在y軸上,圓(x-1)2+y2=1內(nèi)切于△PRN,求△PRN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)1,F(xiàn)2是左右焦點(diǎn),A,B是長(zhǎng)軸兩端點(diǎn),點(diǎn)P(a,b)與F1,F(xiàn)2圍成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q是橢圓上異于A,B的動(dòng)點(diǎn),直線QA、QB分別交直線l:x=m(m<-2)于M,N兩點(diǎn).
(i)當(dāng)$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$時(shí),求Q點(diǎn)坐標(biāo);
(ii)是否存在實(shí)數(shù)m,使得以MN為直徑的圓經(jīng)過(guò)點(diǎn)F1?若存在,求出實(shí)數(shù)m的值,若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知定義在R上的偶函數(shù)y=f(x)滿足f(x+4)=f(x),當(dāng)x∈[4,5]時(shí),f(x)=x+1,則f(103)=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.16+2πB.16+πC.8+2πD.8+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某學(xué)校的學(xué)生人數(shù)為高一年級(jí)150人,高二年級(jí)180人,高三年級(jí)210人,為了調(diào)查該學(xué)校學(xué)生視力情況需要抽取72人作為樣本,若采用分層抽樣的方式,則高一和高二年級(jí)一共抽取的人數(shù)為44.

查看答案和解析>>

同步練習(xí)冊(cè)答案