13.某學(xué)校的學(xué)生人數(shù)為高一年級150人,高二年級180人,高三年級210人,為了調(diào)查該學(xué)校學(xué)生視力情況需要抽取72人作為樣本,若采用分層抽樣的方式,則高一和高二年級一共抽取的人數(shù)為44.

分析 先求出每個個體被抽到的概率以及高一和高二年級的總?cè)藬?shù),用高一和高二年級的總?cè)藬?shù)乘以每個個體被抽到的概率,即得所求.

解答 解:每個個體被抽到的概率等于$\frac{72}{150+180+210}$=$\frac{2}{15}$,而高一和高二年級的總?cè)藬?shù)是 150+180=330,
故高一和高二年級一共抽取的人數(shù)為330×$\frac{2}{15}$=44,
故答案為:44

點評 本題主要考查分層抽樣的定義和方法,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應(yīng)抽取的個體數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司為了增加旅游效益,準(zhǔn)備在下屬的某生態(tài)園內(nèi)選定1號到7號7個并排的大棚,種植包括草莓和葡萄在內(nèi)的7種不同的水果,每個大棚只能種植一種水果供游客進行自摘.
(1)求草莓只能種植在3號或4號大棚,且葡萄不能在2號或5號大棚種植的方法種數(shù);
(2)求種植葡萄和草莓之間恰好間隔3個大棚的方法種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,AB=3,AC=4,∠BAC=60°,若P是△ABC所在平面內(nèi)一點,且AP=2,則$\overrightarrow{PB}$•$\overrightarrow{PC}$的最大值為( 。
A.10B.12C.10+2$\sqrt{37}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n-2a2n的值;
(2)當(dāng)n≥6時,求證:${A}_{2}^{2}$a2+2A${\;}_{3}^{2}$a3+…+22n-2${A}_{2n}^{2}$a2n<49n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.運行如圖所示的程序框圖,若輸出的結(jié)果為$\frac{1}{63}$,則判斷框中應(yīng)填入的條件是(  )
A.i>4?B.i<4?C.i>5?D.i<5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3
命題①:?x∈R,都有f(x)+f(-x)=0;
命題②:?x1,x2∈R,(x1-x2)(f(x1)-f(x2))<0.( 。
A.命題①成立,命題②不成立B.命題①不成立,命題②成立
C.命題①和命題②都成立D.命題①和命題②都不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.曲線y=1+$\sqrt{4-{x^2}}$(|x|≤2)與直線y=k(x-2)+4只有一個公共點時,實數(shù)k的取值范圍是$k=\frac{5}{12}或k>\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從集合A={-1,$\frac{1}{2}$,2}中隨機選取一個數(shù)記為k,從集合B={$\frac{1}{2}$,$\frac{3}{2}$,2}中隨機選取一個數(shù)記為a,則ak>1的概率為$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(  )寸.
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案