分析 (Ⅰ)先求出基本事件總數(shù),再求出取出的3個小球上的最小標號為3包含的基本事件個數(shù),由此能求出取出的3個小球上的最小標號為3的概率.
(Ⅱ)由已知得X的可能取值為1,2,3,4,分別求出相應的概率,由此能求出X的分布列和EX.
解答 解:(Ⅰ)盒子中裝有標號分別為1、2、3、4、5的同質(zhì)小球各2個,現(xiàn)從中一次性取出3個小球,
基本事件總數(shù)n=${C}_{10}^{3}$=120,
取出的3個小球上的最小標號為3包含的基本事件個數(shù)m=${C}_{2}^{1}{C}_{4}^{2}+{C}_{2}^{2}{C}_{4}^{1}$=16,
∴取出的3個小球上的最小標號為3的概率p=$\frac{m}{n}$=$\frac{16}{120}$=$\frac{2}{15}$,
(Ⅱ)由已知得X的可能取值為1,2,3,4,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{8}^{2}+{C}_{2}^{2}{C}_{8}^{1}}{{C}_{10}^{3}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{2}^{1}{C}_{6}^{2}+{C}_{2}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$,
P(X=3)=$\frac{2}{15}$,
P(X=4)=$\frac{{C}_{2}^{1}{C}_{2}^{2}+{C}_{2}^{2}{C}_{2}^{1}}{{C}_{10}^{3}}$=$\frac{1}{30}$,
∴X的分布列為:
X | 1 | 2 | 3 | 4 |
P | $\frac{8}{15}$ | $\frac{3}{10}$ | $\frac{2}{15}$ | $\frac{1}{30}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{30}}{10}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{70}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
學生序號i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
數(shù)學成績xi | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成績yi | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
$\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
76 | 83 | 812 | 526 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sin2A•f(sinB)<sin2B•f(sinA) | B. | sin2A•f(sinA)>sin2B•f(sinB) | ||
C. | cos2B•f(sinA)<sin2A•f(cosB) | D. | cos2B•f(sinA)>sin2A•f(cosB) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com