6.曲線f(x)=x(3lnx+1)在x=1處的切線方程為y=4x-3.

分析 求出f(x)的導(dǎo)數(shù),求得切線的斜率和切點,運用點斜式方程,可得所求切線的方程.

解答 解:f(x)=x(3lnx+1)的導(dǎo)數(shù)為f′(x)=3lnx+1+x•$\frac{3}{x}$=3lnx+4,
可得曲線在x=1處的切線斜率f′(1)=4,切點為(1,1),
即有曲線在x=1處的切線方程為y-1=4(x-1),
即為y=4x-3.
故答案為:y=4x-3.

點評 本題考查導(dǎo)數(shù)的運用:求切線方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用點斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.奇函數(shù)y=x|x+a|的單調(diào)遞增區(qū)間是(-∞,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若兩曲線y=2tanx(0<x<$\frac{π}{2}$),y=3cosx相交于點A,過點A作AH⊥x軸于點H,并與曲線y=4sinx交于點B,則線段BH的長度是$\frac{4\sqrt{10}-4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.秦九韶算法是中國南宋時期的數(shù)學(xué)家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an-1xn-1+…+a1x+a0的具體函數(shù)值,運用常規(guī)方法計算出結(jié)果最多需要n次加法和$\frac{n(n+1)}{2}$乘法,而運用秦九韶算法由內(nèi)而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5-x4+3x3-5x當(dāng)x=3時的值時,最先計算的是( 。
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若曲線f(x)=x4-x在點P處的切線平行于直線3x-y=0,則點P的坐標(biāo)為(  )
A.(0,0)B.(1,0)C.(1,-3)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx,(a∈R).
(Ⅰ)當(dāng)a=0時,求f(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值;
(Ⅱ)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如果有理數(shù)m可以表示成2x2-6xy+5y2(其中x、y是任意有理數(shù))的形式,我們就稱m為“世博數(shù)”.
(1)兩個“世博數(shù)”a、b之積也是“世博數(shù)”嗎?為什么?
(2)證明:兩個“世博數(shù)”a、b(b≠0)之商也是“世博數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某城市要在占地3250畝的荒山上建造森林公園,2014年春季開始植樹100畝,以后每年春季比上一年多植樹50畝,求到哪一年春季才能將荒山全部綠化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=1,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=17.
(Ⅰ)求$\overrightarrow a$與$\overrightarrow b$的夾角和|${\overrightarrow a$+$\overrightarrow b}$|的值;
(Ⅱ)設(shè)$\overrightarrow c$=m$\overrightarrow a$+2$\overrightarrow b$,$\overrightarrow d$=2$\overrightarrow a$-$\overrightarrow b$,若$\overrightarrow c$與$\overrightarrow d$共線,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案