11.如圖,A、B兩點(diǎn)間的距離為3$\sqrt{2-\sqrt{2}}$.

分析 由余弦定理可得結(jié)論.

解答 解:由余弦定理可得AB=$\sqrt{9+9-2×3×3×cos45°}$=3$\sqrt{2-\sqrt{2}}$.
故答案為:3$\sqrt{2-\sqrt{2}}$.

點(diǎn)評(píng) 本題考查余弦定理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在如圖所示的坐標(biāo)紙中,用直尺和圓規(guī)畫出下列向量:
(1)|$\overrightarrow{OA}$|=4,點(diǎn)A在點(diǎn)O正南方向;
(2)|$\overrightarrow{OB}$|=2$\sqrt{2}$,點(diǎn)B在點(diǎn)O北偏西45°方向;
(3)|$\overrightarrow{OC}$|=2,點(diǎn)C在點(diǎn)O南偏西30°方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.有一批材料長(zhǎng)為36m,現(xiàn)用此材料圍成一塊“日”字形矩形場(chǎng)地,試求所圍矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求函數(shù)y=cos($\frac{π}{12}$-x)-cos($\frac{5π}{12}$+x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在數(shù)列{an}中,an=(n-7)($\frac{1}{2}$)n(n∈N*),求數(shù)列{an}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2,一3),$\overrightarrow$=(1,2),$\overrightarrow{p}$=(9,4),若$\overrightarrow{p}$=m$\overrightarrow{a}$+n$\overrightarrow$,則m+n=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-1),且($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow$,則x=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx(a∈R,b∈R).
(1)當(dāng)b=1時(shí),若y=f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個(gè)不同的零點(diǎn)x1,x2,求證:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知平行六面體ABCD-A1B1C1D1所有棱長(zhǎng)均為1,∠BAD=∠BAA1=∠DAA1=60°,則AC1的長(zhǎng)為$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案