16.已知A1,A2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn),以線段A1A2為直徑的圓與雙曲線C的漸近線的一個交點(diǎn)為(1,$\sqrt{3}$),則C的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

分析 根據(jù)題意,點(diǎn)(1,$\sqrt{3}$)到原點(diǎn)的距離為半徑,可得a=2.由點(diǎn)(1,$\sqrt{3}$)在雙曲線的漸近線上,得到$\frac{a}$=$\sqrt{3}$,兩式聯(lián)解得出a=2,b=2$\sqrt{3}$,即可得到所求雙曲線的方程.

解答 解:∵點(diǎn)(1,$\sqrt{3}$)在以|A1A2|為直徑的圓上,
∴a=$\sqrt{1+3}$=2,①
又∵點(diǎn)(1,$\sqrt{3}$)在雙曲線的漸近線y=$\frac{a}$x上,
∴$\frac{a}$=$\sqrt{3}$②,
①②聯(lián)解,得a=2,b=2$\sqrt{3}$,
可得雙曲線的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故答案為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

點(diǎn)評 本題考查雙曲線的方程的求法,注意運(yùn)用漸近線方程和圓的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{2}^{2}}$=1(a>0)的左、右焦點(diǎn),P為雙曲線上的一點(diǎn),若∠F1PF1=60°,則△F1PF2的面積是( 。
A.$\frac{4\sqrt{3}}{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為e,則“e>$\sqrt{2}$”是“0<a<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線C:y2=4x的焦點(diǎn)為F,直線AB過F點(diǎn)與拋物線C交拋物線于A、B兩點(diǎn),且AB=6,若AB的垂直平分線交x軸于P點(diǎn),則|OP|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線方程為$y=±\sqrt{2}x$,拋物線N的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)E(2,2)為雙曲線M與拋物線N的一個公共點(diǎn).
(Ⅰ)求雙曲線M與拋物線N的方程;
(Ⅱ) 過拋物線N的焦點(diǎn)F作兩條相互垂直的直線l1,l2,與拋物線分別交于點(diǎn)A、B,C、D.
(。┤糁本EA與直線EB的傾斜角互補(bǔ)(點(diǎn)A,B不同于E點(diǎn)),求直線l1的斜率;
(ⅱ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一點(diǎn)M為圓心的圓與x軸恰相切于雙曲線的一個焦點(diǎn)F,且與y軸交于P、Q兩點(diǎn).若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( 。
A.$(\frac{{\sqrt{6}+\sqrt{2}}}{2},+∞)$B.($\frac{\sqrt{5}+1}{2}$,$\frac{\sqrt{6}+\sqrt{2}}{2}$)C.$(\sqrt{6}+\sqrt{2},+∞)$D.$(1,\sqrt{6}+\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等比數(shù)列{an}的前n項為和Sn,且a3-2a2=0,S3=7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列$\left\{{\frac{n}{a_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{5}$.則b=2,若以(2,1)為圓心,r為半徑的圓與該雙曲線的兩條漸近線組成的圖形只有一個公共點(diǎn),則半徑r=$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于x的不等式|x+1|≥kx的解集為R,則實(shí)數(shù)k的取值范圍為( 。
A.k≤0B.-1≤k≤0C.k≥0D.0≤k≤1

查看答案和解析>>

同步練習(xí)冊答案