已知正四棱柱的底面邊長為4cm,高為5cm,求它的全面積和體積.
考點(diǎn):棱柱、棱錐、棱臺的體積,棱柱、棱錐、棱臺的側(cè)面積和表面積
專題:空間位置關(guān)系與距離
分析:利用正四棱柱的全面積和體積的計算公式即可得出.
解答: 解:∵正四棱柱的底面邊長為4cm,高為5cm,
∴它的全面積S=42×2+4×5×4=112.
體積V=42×5=80.
點(diǎn)評:本題考查了正四棱柱的全面積和體積的計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,三棱柱ABC-A1B1C1D1,中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱錐A-BB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知正方形ABCD,E、F分別是AB、CD中點(diǎn),將△ADE沿DE折起,如圖2示,求證:BF∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某山區(qū)的兩個工廠A、B直線距離14km,工廠C距A、B直線距離都是25km,E為線段AB的中點(diǎn),在線段CE上選建變電站D,并從點(diǎn)D處鋪設(shè)到工廠A,B,C的輸電線DA,DB,DC.
(1)變電站D建在何處,可使鋪設(shè)的總輸電線長最短?
(2)因山區(qū)復(fù)雜條件,希望鋪設(shè)的三段輸電線中最遠(yuǎn)一段的長度為最小,那么變電站D建在何處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,O為原點(diǎn),射線OA與x軸正半軸重合,射線OB是第一象限角平分線.在OA上有點(diǎn)列A1,A2,A3,…,An,…,在OB上有點(diǎn)列B1,B2,B3,…,Bn,…已知
OAn+1
=
4
5
OAn
,A1(5,0),|
OB1
|=
2
,|
OBn+1
|=|
OBn
|+
2

(1)求點(diǎn)A2,B1的坐標(biāo);
(2)求
OAn
,
OBn
的坐標(biāo);
(3)求△AnOBn面積的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠計劃生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品都需要兩種原料.生產(chǎn)甲產(chǎn)品1工時需要A種原料3kg,B種原料1kg;生產(chǎn)乙產(chǎn)品1工時需要A種原料2kg,B種原料2kg.現(xiàn)有A種原料1200kg,B種原料800kg.如果生產(chǎn)甲產(chǎn)品每工時的平均利潤是30元,生產(chǎn)乙產(chǎn)品每工時的平均利潤是40元,問甲、乙兩種產(chǎn)品各生產(chǎn)多少工時能使利潤的總額最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),M是E上一點(diǎn)且MF2與x軸垂直,直線MF1與E的另一個交點(diǎn)為N.
(1)若直線MN的斜率為
3
4
,求E的離心率;
(2)若直線MN在y軸上的截距為1,且a=3,求|MN|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐的直觀圖及其俯視圖與側(cè)視圖如圖,俯視圖是邊長為2的正三角形,側(cè)視圖是有一直角邊為2的直角三角形,則該三棱錐的正視圖面積為( 。
A、
2
B、2
C、4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

加工一種零件需要三道工序,其中只會第一道工序的有4人,只會第二道工序的有2人,只會第三道工序的有3人,現(xiàn)在從每道工序中各選一人加工這種零件,共有( 。┓N不同的選派方法.
A、9B、12C、24D、30

查看答案和解析>>

同步練習(xí)冊答案