【題目】已知橢圓的左、右焦點(diǎn)分別是,離心率,過點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)若直線過橢圓的右焦點(diǎn),且與軸不重合,交橢圓兩點(diǎn),過點(diǎn)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

【答案】(1)(2)

【解析】

試題分析:(1)過點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為通徑即,而,解方程組得(2)由于四邊形對(duì)角線相互垂直,所以四邊形面積,其中為直線與圓的弦長(zhǎng),可根據(jù)圓中垂徑定理求解,而為直線與橢圓的弦長(zhǎng),可根據(jù)弦長(zhǎng)公式求解,先討論斜率不存在的情形,,再考慮斜率存在情形:設(shè)的方程聯(lián)立方程組,結(jié)合韋達(dá)定理可得,根據(jù)點(diǎn)到直線距離公式可得,代入得,綜上可得四邊形面積的取值范圍為.

試題解析:(1)由于,將代入橢圓方程,即,由題意知,即,又,所以橢圓的方程.

(2)當(dāng)直線軸不垂直時(shí),設(shè)的方程,

,得,則,

所以,過點(diǎn)且與垂直的直線,圓心的距離是,所以.

故四邊形面積.可得當(dāng)軸不垂直時(shí),四邊形面積的取值范圍為.當(dāng)垂直時(shí),其方程為,四邊形面積為,綜上,四邊形面積的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧號(hào)航母紀(jì)念章從2012年10月5日起開始上市.通過市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià) 單位:元與上市時(shí)間單位:天的數(shù)據(jù)如下:

1根據(jù)上表數(shù)據(jù)結(jié)合散點(diǎn)圖,從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系并說明理由:①;②;③

2利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】與均勻隨機(jī)數(shù)特點(diǎn)不符的是(  )

A. 它是[0,1]內(nèi)的任何一個(gè)實(shí)數(shù)

B. 它是一個(gè)隨機(jī)數(shù)

C. 出現(xiàn)的每一個(gè)實(shí)數(shù)都是等可能的

D. 是隨機(jī)數(shù)的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題若直線AB、CD是異面直線,則直線AC、BD也是異面直線的過程歸納為以下三個(gè)步驟:

①則AB、C、D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;

②所以假設(shè)錯(cuò)誤,即直線AC、BD也是異面直線;

③假設(shè)直線AC、BD是共面直線.

則正確的序號(hào)順序?yàn)?/span>______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題px0x-lnx0,則¬p

A. x00,x0-lnx00 B. x00,x0-lnx0≤0

C. x0,x-lnx0 D. x0,x-lnx≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1當(dāng)時(shí),求函數(shù)的定義域;

2是否存在實(shí)數(shù),使函數(shù)遞減,并且最大值為1,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx2x.

1fx2,求x的值;

22tf2tmft0對(duì)于t[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

2是否存在整數(shù),使得關(guān)于的不等式的解集為?若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤(rùn)15萬元,為應(yīng)對(duì)國(guó)際金融危機(jī)給企業(yè)帶來的不利影響,該企業(yè)實(shí)施優(yōu)化重組,分流增效的策略,分流出一部分員工待崗為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬元據(jù)評(píng)估,當(dāng)待崗員工人數(shù)不超過原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)萬元;當(dāng)待崗員工人數(shù)超過原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)18萬元

1求企業(yè)年利潤(rùn)萬元關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式;

2為使企業(yè)年利潤(rùn)最大,應(yīng)安排多少員工待崗?

查看答案和解析>>

同步練習(xí)冊(cè)答案