【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤15萬元,為應(yīng)對國際金融危機(jī)給企業(yè)帶來的不利影響,該企業(yè)實(shí)施“優(yōu)化重組,分流增效”的策略,分流出一部分員工待崗.為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬元.據(jù)評估,當(dāng)待崗員工人數(shù)不超過原有員工1.4%時,留崗員工每人每年可為企業(yè)多創(chuàng)利潤萬元;當(dāng)待崗員工人數(shù)超過原有員工1.4%時,留崗員工每人每年可為企業(yè)多創(chuàng)利潤1.8萬元.
(1)求企業(yè)年利潤(萬元)關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式;
(2)為使企業(yè)年利潤最大,應(yīng)安排多少員工待崗?
【答案】(1);(2).
【解析】
試題分析:(1),當(dāng)且時,用人數(shù)乘以利潤再減去補(bǔ)貼,得出的表達(dá)式;當(dāng)且時,同樣用人數(shù)乘以利潤再減去補(bǔ)貼,得出的表達(dá)式;(2)當(dāng)時,易知在增在減,比較后得出本區(qū)間最大為.當(dāng)時,函數(shù)為減函數(shù),,所以最大為.
試題解析:
∵,∴當(dāng)且時,
.
當(dāng)且時,,
∴.………………6分
(2)當(dāng)時,易知在增在減.
,.
即當(dāng)時,;………………10分
當(dāng)時,函數(shù)為減函數(shù),.
綜上所述,要使企業(yè)年利潤最大,應(yīng)安排10名員工待崗.………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別是,離心率,過點(diǎn)且垂直于軸的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)若直線過橢圓的右焦點(diǎn),且與軸不重合,交橢圓于兩點(diǎn),過點(diǎn)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,圓周角∠BAC的平分線與圓交于點(diǎn)D,過點(diǎn)D的切線與弦AC的延長線交于點(diǎn) E,AD交BC于點(diǎn)F.
(1)求證:BC∥DE;
(2)若D、E、C、F四點(diǎn)共圓,且,求∠BAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,函數(shù).
(1)寫出的單調(diào)區(qū)間;
(2)若在上的最大值為,求的取值范圍;
(3)若對任意正實(shí)數(shù),不等式恒成立,求正實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖?( )
①各棱長相等,同一頂點(diǎn)上的任意兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;
③各個面都是全等的正三角形,同一頂點(diǎn)上的任意兩條棱的夾角都相等.
A. ① B. ③ C. ①② D. .①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個特定時段內(nèi),以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)正北海里有一個雷達(dá)觀測站,某時刻測得一艘勻速直線行駛的船只位于點(diǎn)北偏東且與點(diǎn)相距海里的位置,經(jīng)過分鐘又測得該船已行駛到點(diǎn)北偏東(其中且與點(diǎn)相距海里的位置.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會進(jìn)入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com