20.NBA決賽期間,某高校對(duì)學(xué)生是否收看直播進(jìn)行調(diào)查,將得到的數(shù)據(jù)繪成如下的2×2列聯(lián)表,但部分字跡不清:
男生女生總計(jì)
收看40
不收看30
總計(jì)60110
將表格填寫完整,試說明是否收看直播與性別是否有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828

分析 根據(jù)所給數(shù)據(jù)得到列聯(lián)表,把數(shù)據(jù)代入觀測(cè)值公式中,做出觀測(cè)值,同所給的臨界值表進(jìn)行比較,即可得出結(jié)論.

解答 解:

男生女生總計(jì)
收看402060
不收看203050
總計(jì)6050110
$k=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}≈7.822>6.635$;             (10分)
所以有99%的把握認(rèn)為是否收看直播與性別有關(guān),(12分)

點(diǎn)評(píng) 本題考查了列聯(lián)表、獨(dú)立性檢驗(yàn),獨(dú)立性檢驗(yàn)的應(yīng)用的步驟為:根據(jù)已知條件將數(shù)據(jù)歸結(jié)到一個(gè)表格內(nèi),列出列聯(lián)表,再根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式,計(jì)算出k值,然后代入離散系數(shù)表,比較即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(cosx,m),m∈R.
(1)若m=$\sqrt{3}$,且$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{3sinx-cosx}{sinx+cosx}$的值;
(2)已知函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$-2m2-1,若函數(shù)f(x)在[0,$\frac{π}{2}$]上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.目標(biāo)函數(shù)z=x+y,變量x,y滿足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,則( 。
A.zmin=2,zmax=3B.zmin=2,無最大值
C.zmax=3,無最小值D.既無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某課題小組共有15名同學(xué),其中有7名男生,現(xiàn)從中任意選出10人,用X表示這10人中男生的人數(shù),則下列概率等于$\frac{{C}_{7}^{4}{C}_{8}^{6}}{{C}_{15}^{10}}$的是( 。
A.P(X≤4)B.P(X=4)C.P(X≤6)D.P(X=6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.現(xiàn)如今,“網(wǎng)購(gòu)”一詞已不再新鮮,越來越多的人已經(jīng)接受并喜歡上了這種購(gòu)物的方式,但隨之也產(chǎn)生了商品質(zhì)量差與信譽(yù)不好等問題.因此,相關(guān)管理部門制定了針對(duì)商品質(zhì)量和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)根據(jù)題中數(shù)據(jù)完成下表,并通過計(jì)算說明:能否有99.9%的把握認(rèn)為,商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng)對(duì)服務(wù)不滿意合計(jì)
對(duì)商品好評(píng)
對(duì)商品不滿意
合計(jì)
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X:
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.化簡(jiǎn):
(1)sin420°cos330°+sin(-690°)•cos(-660°);
(2)$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{π}{2}+α)}{sin(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于平面向量,有下列四個(gè)命題:
①若$\vec a•\vec b=\vec b•\vec c,則\vec a=\vec c$.
②$\vec a$=(1,1),$\vec b$=(2,x),若$\vec a+\vec b$與$4\vec b-2\vec a$平行,則x=2.
③非零向量$\vec a$和$\vec b$滿足|$\vec a}$|=|${\vec b}$|=|${\vec a-\vec b}$|,則$\vec a$與$\vec a+\vec b$的夾角為60°.
④點(diǎn)A(1,3),B(4,-1),與向量$\overrightarrow{AB}$同方向的單位向量為($\frac{3}{5},-\frac{4}{5}$).
其中真命題的序號(hào)為②④.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,-2),若$\overrightarrow{a}$⊥$\overrightarrow$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若3+bi與a-i互為共軛復(fù)數(shù),則|a+bi|等于( 。
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案