分析 (1)由$\overrightarrow{CB}$•$\overrightarrow{CD}$=0知∠BCD=90°,結(jié)合sin∠ACB=$\frac{5\sqrt{7}}{14}$可求出sin∠ACD,在△ACD中使用正弦定理求出∠ADC,∠A,和CD.
(2)∠B=∠ADC-∠BCD.
解答 解:(1)∵$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,∴∠BCD=90°.
∵sin∠ACB=sin(∠ACD+90°)=$\frac{5\sqrt{7}}{14}$,
∴cos∠ACD=$\frac{5\sqrt{7}}{14}$,∴sin∠ACD=$\frac{\sqrt{21}}{14}$.
在△ACD中,∵$\frac{AD}{sin∠ACD}=\frac{AC}{sin∠ADC}$,即$\frac{1}{\frac{\sqrt{21}}{14}}=\frac{\sqrt{7}}{sin∠ADC}$,
∴sin∠ADC=$\frac{\sqrt{3}}{2}$,∴∠ADC=120°.
∴∠A=60°-∠ACD,
∴sin∠A=sin(60°-∠ACD)=$\frac{\sqrt{3}}{2}×\frac{5\sqrt{7}}{14}-\frac{1}{2}×\frac{\sqrt{21}}{14}$=$\frac{\sqrt{21}}{7}$.
∵$\frac{CD}{sinA}=\frac{AD}{sin∠ACD}$,即$\frac{CD}{\frac{\sqrt{21}}{7}}=\frac{1}{\frac{\sqrt{21}}{14}}$,∴CD=2.
(2)∵∠B+∠BCD=∠ADC,
∴∠B=∠ADC-∠BCD=120°-90°=30°.
點(diǎn)評(píng) 本題考查了正余弦定理在解三角形中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8p2 | B. | 4p2 | C. | 2p2 | D. | p2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com