14.函數(shù)y=$\sqrt{sin(cosx)}$的定義域是{x|-$\frac{π}{2}$$+2kπ≤x≤2kπ+\frac{π}{2}$,k∈Z}.

分析 利用被開方數(shù)非負(fù),結(jié)合三角函數(shù)求解即可.

解答 解:要使函數(shù)有意義,可得:sin(cosx)≥0,
可得0≤cosx≤1,
可得:-$\frac{π}{2}$$+2kπ≤x≤2kπ+\frac{π}{2}$,k∈Z.
故答案為:{x|-$\frac{π}{2}$$+2kπ≤x≤2kπ+\frac{π}{2}$,k∈Z}.

點評 本題考查函數(shù)的定義域的求法,三角函數(shù)的定義域的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,若a=1,c=$\frac{\sqrt{2}}{2}$,∠C=40°,則符合題意的b的值有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知:tanα=5,求下列各式的值.
(1)$\frac{5sinα-3cosα}{7sinα+9cosα}$;
(2)$\frac{co{s}^{2}α}{4si{n}^{2}α+2sinαcosα-3}$;
(3)2sin2α-3cosαsinα+5cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD的底面為矩形,AB=$\sqrt{2}$,BC=1,E,F(xiàn)分別是AB,PC的中點,DE⊥PA,求證:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={m|m=a+b$\sqrt{2}$,a,b∈Q},則下列元素中屬于集合M的有(  )
①m=1+$\sqrt{2}$π;②m=$\sqrt{7+2\sqrt{12}}$;③m=$\frac{1}{2+\sqrt{2}}$;④m=$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若不等式0≥sin2x+mcosx-2對任意x∈[0,$\frac{1}{2}$π)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC的三邊長分別為AB=$\sqrt{{m}^{2}+{n}^{2}}$,AC=$\sqrt{{m}^{2}+{t}^{2}}$,BC=$\sqrt{{n}^{2}+{t}^{2}}$,其中m,n,t∈(0,+∞),則△ABC是( 。
A.直角三角形B.鈍角三角形
C.銳角三角形D.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow$=($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$),$\overrightarrow{c}$=(cosx,sinx),x∈[0,$\frac{π}{2}$]
(1)若|$\overrightarrow{a}$|=|$\overrightarrow$|,求x的值
(2)設(shè)函數(shù)f(x)=$\overrightarrow$•$\overrightarrow{c}$,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:若x2+y2=0,則x=0或y=0;命題q:?x∈R,都有cos2x+4sinx-3≤0.給出下列結(jié)論
①命題p的否命題:若x2+y2≠0,則x≠0或y≠0;
②命題“p∧q”是真命題;
③命題q的否定:?x0∈R,使得cos2x0+4sinx0-3>0;
④命題“?p∨?q”是假命題,
其中錯誤的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案