A. | $\frac{{13\sqrt{5}}}{3}π$ | B. | 13π | C. | $\frac{{13\sqrt{3}}}{3}π$ | D. | $13\sqrt{5}π$ |
分析 依題意設(shè)設(shè)圓臺(tái)上、底面半徑分別為r、3r,由 π(r+3r)•3=12π,解得:r=1,從而求出該圓臺(tái)的高,由此能示出該圓臺(tái)的體積.
解答 解:依題意設(shè)設(shè)圓臺(tái)上、底面半徑分別為r、3r,
∵圓臺(tái)的側(cè)面積為12π,
∴π(r+3r)•3=12π,解得:r=1,
∴該圓臺(tái)的高h(yuǎn)=$\sqrt{{3}^{2}-(3-1)^{2}}$=$\sqrt{5}$,
∴該圓臺(tái)的體積為V=$\frac{1}{3}$π×$\sqrt{5}$×(32+3×1+12)=$\frac{13\sqrt{5}}{3}π$.
故選:A.
點(diǎn)評 本題考查圓臺(tái)的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓臺(tái)的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | a<b<c | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,6) | B. | (-1,0) | C. | (1,2) | D. | (-3,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com