【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)解關(guān)于的不等式.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)求導(dǎo)得,令,可得,又,即可求出的單調(diào)區(qū)間。
(2)對(duì)x分類(lèi)討論,當(dāng) 時(shí)、時(shí)不符合題意。當(dāng)時(shí)原不等式等價(jià)于,構(gòu)造函數(shù),求導(dǎo)判斷單調(diào)性,即可求解。當(dāng)時(shí),原不等式等價(jià)于,構(gòu)造新函數(shù),,求導(dǎo),結(jié)合單調(diào)性,即可求解
(1)依題:且,,.令,,∴在定義域上單調(diào)遞增,∴,,,減區(qū)間為;,,增區(qū)間為.
(2)【法一】當(dāng)時(shí),,不合題意.
當(dāng)時(shí),不等式左右相等,不合題意.
當(dāng)時(shí),易證:,現(xiàn)證:,證:.
令,,∴,∴.
∴合題.
當(dāng)時(shí),不等式,令,,
易證:,∴,,.
綜上可得:.
【法二】
當(dāng)時(shí),,不合題意.
當(dāng)時(shí),不等式左右相等,不合題意.
當(dāng)時(shí),易證:,現(xiàn)證:,證:.
證:證:,,.
∴,∴,∴合題.
當(dāng)時(shí),,易證:.
先證:證證.
令,,時(shí),,∴.
綜上可得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)求的值域;
(2)若存在唯一的整數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l:y=2x﹣1與雙曲線(,)相交于A、B兩個(gè)不
同的點(diǎn),且(O為原點(diǎn)).
(1)判斷是否為定值,并說(shuō)明理由;
(2)當(dāng)雙曲線離心率時(shí),求雙曲線實(shí)軸長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動(dòng),有以下四個(gè)命題:
A.平面 ; B.平面⊥平面;
C. 在底面上的射影圖形的面積為定值;
D. 在側(cè)面上的射影圖形是三角形.其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知|x|≤2,|y|≤2,點(diǎn)P的坐標(biāo)為(x,y).
(1)求當(dāng)x,y∈R時(shí),P滿足(x-2)2+(y-2)2≤4的概率.
(2)求當(dāng)x,y∈Z時(shí),P滿足(x-2)2+(y-2)2≤4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,,為的中點(diǎn)
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)為線段上一點(diǎn),,若直線與平面所成角的正弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com