10.若f(x)是奇函數(shù),且x>0時,f(x)=-x${\;}^{\frac{1}{2}}$,則當x<0時,f(x)的解析式是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=(-x)${\;}^{\frac{1}{2}}$C.f(x)=-(-x)${\;}^{\frac{1}{2}}$D.f(x)=-x${\;}^{\frac{1}{2}}$

分析 當x<0時,-x>0,由已知表達式可求出f(-x),利用奇函數(shù)的性質(zhì)得到f(x)與f(-x)的關(guān)系,從而可得到答案.

解答 解:當x<0時,-x>0,則f(-x)=-(-x)${\;}^{\frac{1}{2}}$,
又f(x)為奇函數(shù),所以f(x)=-f(-x)=(-x)${\;}^{\frac{1}{2}}$,
故選:B.

點評 本題考查了借助函數(shù)的奇偶性求解函數(shù)的解析式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項和為Sn,若S8-S2=30,則S10=(  )
A.40B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-4x-3,(x<-1)}\\{1-|x|,(x≥-1)}\end{array}\right.$,若f(f(m))≥0,則實數(shù)m的取值范圍是[-4,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域為一切實數(shù),則k的取值范圍是( 。
A.k>0或k≤-9B.k≥1C.-9≤k≤1D.0≤k≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知x1是函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x-($\frac{1}{2}$)x的零點,x2是函數(shù)g(x)=log2x-($\frac{1}{2}$)x的零點,則x1x2的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.求函數(shù)y=cos2(x+$\frac{π}{4}$)-cos2(x-$\frac{π}{4}$)的周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點P為△ABC所在的平面內(nèi)一點,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$=-1,則△ABC的面積為( 。
A.$\frac{5\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}1,\;\;-1≤x≤0\\ \frac{1}{x},\;\;x>0\end{array}\right.$,則使方程x+f(x)=m有解的實數(shù)m的取值范圍是( 。
A.(-∞,0)∪(1,2)B.[0,+∞)C.(-∞,1]∪[2,+∞)D.[0,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是( 。
A.$?{x_0}∉{C_R}Q,x_0^2∈Q$B.$?{x_0}∈{C_R}Q,x_0^2∉Q$
C.$?{x_0}∈{C_R}Q,x_0^2∈Q$D.$?{x_0}∈{C_R}Q,x_0^2∉Q$

查看答案和解析>>

同步練習冊答案