18.函數(shù)y=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域為一切實數(shù),則k的取值范圍是( 。
A.k>0或k≤-9B.k≥1C.-9≤k≤1D.0≤k≤1

分析 根據(jù)函數(shù)的定義域得到kx2+2kx+1≥0恒成立,分當k=0時,當k≠0時進行討論,即可得到結(jié)論.

解答 解:∵函數(shù)y=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域為一切實數(shù),
∴kx2-6kx+k+8≥0恒成立,
當k=0時,不等式等價為8≥0,滿足條件.
當k≠0時,要使不等式恒成立,
則 $\left\{\begin{array}{l}{k>0}\\{△=32{k}^{2}-32k≤0}\end{array}\right.$,
即 $\left\{\begin{array}{l}{k>0}\\{0≤k≤1}\end{array}\right.$,
解得0<k≤1,
綜上0≤k≤1,
故選:D.

點評 本題主要考查函數(shù)定義域的應用,將函數(shù)轉(zhuǎn)化為不等式恒成立是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知角α的終邊落在第二象限,且與單位圓交點的縱坐標為$\frac{{2\sqrt{5}}}{5}$,將角α的終邊逆時針旋轉(zhuǎn)$\frac{π}{2}$與角β的終邊重合.
(Ⅰ) 求cosα;
(Ⅱ) 求$\frac{{sinα-cos({α-π})}}{{sinβ+2sin({\frac{π}{2}-β})}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.點E,F(xiàn)分別是正方形ABCD的邊AB和CD上的點且AB=2AE,CD=4FD,點P為線段EF上的動點$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在等比數(shù)列{an}中,a2=-$\frac{1}{25}$,a5=-5判斷-125是否為數(shù)列中的項,如果是,請指出是第幾項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若關(guān)于x的方程f(x)=a|x-1|恰有兩個不同的實數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知3$\overrightarrow{a}$-2$\overrightarrow$=(-2,0,4),$\overrightarrow{c}$=(-2,1,2),$\overrightarrow{a}$•$\overrightarrow{c}$=2,且|$\overrightarrow$|=4.
(1)求cos<$\overrightarrow$,$\overrightarrow{c}$>;
(2)記$\overrightarrowl66iwnf$=(-2,0,4),確定實數(shù)k,使得($\overrightarrowmtbiknk$+k$\overrightarrow{c}$)與($\overrightarrow66xus1y$-2$\overrightarrow{c}$)互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若f(x)是奇函數(shù),且x>0時,f(x)=-x${\;}^{\frac{1}{2}}$,則當x<0時,f(x)的解析式是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=(-x)${\;}^{\frac{1}{2}}$C.f(x)=-(-x)${\;}^{\frac{1}{2}}$D.f(x)=-x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知拋物線C1:y2=2px(p>0)的焦點為F,拋物線上的點G(1,m)到焦點的距離為3,橢圓C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一個焦點與拋物線C1的焦點重合,且離心率為$\frac{1}{2}$.
(1)求拋物線C1和橢圓C2的方程;
(2)已知直線l:y=kx-4交橢圓C2于A、B兩個不同的點,若原點O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)M是圓P:(x+5)2+y2=36上一動點,點Q的坐標為(5,0),若線段MQ的垂直平分線交直線PM于點N,則點N的軌跡方程為(  )
A.$\frac{x^2}{25}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{9}=1$D.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$

查看答案和解析>>

同步練習冊答案