17.在等比數(shù)列{an}中,已知a2=4,a6=16,則a4=(  )
A.-8B.8C.±8D.不確定

分析 利用等比數(shù)列的通項公式及其性質(zhì)即可得出.

解答 解:設等比數(shù)列{an}的公比為q,∵a2=4,a6=16,
∴a4=$±\sqrt{{a}_{2}•{a}_{6}}$=±8,又a1q=4,可知:a1與q同號.
∴a4=${a}_{1}{q}^{3}$=8,
故選:B.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,a、b、c分別為角A、B、C所對的邊,cosA=$\frac{4}{5}$,b=2,c=5,則a為(  )
A.13B.$\sqrt{13}$C.17D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2離心率為$\frac{{\sqrt{3}}}{2}$,圓O:x2+y2=1的切線l與橢圓C相交于A,B兩點,滿足|AF1|+|AF2|=4.
(1)求橢圓C的標準方程;
(2)當弦長|AB|=$\sqrt{3}$時,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知a,b為正實數(shù),且a+b=1,則$\frac{1}{a}$+$\frac{2}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=ax4-4ax3-$\frac{1}{2}$x2+x(x>0,a>1),有兩個零點x1,x2,證明:4<x1+x2<a+4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{lnx}{x}$-kx(k∈R),在區(qū)間[$\frac{1}{e}$,e2]上的有兩個零點,則k的取值范圍[$\frac{2}{{e}^{4}}$,$\frac{1}{2e}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.擲兩顆均勻的骰子,則點數(shù)之和為4的概率等于( 。
A.$\frac{1}{18}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線$\sqrt{3}$x+y-3=0的傾斜角為(  )
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知非零向量$\overrightarrow a$,$\overrightarrow b$及平面α,若向量$\overrightarrow a$是平面α的法向量,則$\overrightarrow a$•$\overrightarrow b$=0是向量$\overrightarrow b$所在直線平行于平面α或在平面α內(nèi)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案