已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標;
(2)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當CD=
2
時,求直線CD的方程;
(3)經(jīng)過A,P,M三點的圓是否經(jīng)過異于點M的定點,若經(jīng)過,請求出此定點的坐標;若不經(jīng)過,請說明理由.
考點:直線與圓的位置關(guān)系,點到直線的距離公式
專題:綜合題,直線與圓
分析:(1)設(shè)P(2m,m),代入圓方程,解得m,進而可知點P的坐標.
(2)設(shè)直線CD的方程為:y-1=k(x-2),由圓心M到直線CD的距離求得k,則直線方程可得.
(3)設(shè)P(2m,m),MP的中點Q(m,
m
2
+1
),因為PA是圓M的切線,進而可知經(jīng)過A,P,M三點的圓是以Q為圓心,以MQ為半徑的圓,進而得到該圓的方程,根據(jù)其方程是關(guān)于m的恒等式,進而可求得x和y,得到經(jīng)過A,P,M三點的圓必過定點的坐標.
解答: 解:設(shè)P(2m,m),由題可知MP=2,所以(2m)2+(m-2)2=4,
解之得:m=0或m=
4
5
,
故所求點P的坐標為P(0,0)或P(
8
5
,
4
5
).
(2)設(shè)直線CD的方程為:y-1=k(x-2),易知k存在,
由題知圓心M到直線CD的距離為
2
2
,所以
2
2
=
|-2k-1|
1+k2
,
解得,k=-1或k=-
1
7
,故所求直線CD的方程為:x+y-3=0或x+7y-9=0.
(3)設(shè)P(2m,m),MP的中點Q(m,
m
2
+1
),
因為PA是圓M的切線,所以經(jīng)過A,P,M三點的圓是以Q為圓心,以MQ為半徑的圓,
故其方程為:(x-m)2+(y-
m
2
-1)2=m2+(
m
2
-1)2
化簡得:x2+y2-2y-m(2x+y-2)=0,此式是關(guān)于m的恒等式,
故x2+y2-2y=0且(2x+y-2)=0,
解得
x=0
y=2
x=
4
5
y=
2
5

所以經(jīng)過A,P,M三點的圓必過定點(0,2)或(
4
5
,
2
5
).
點評:本題主要考查了圓方程的綜合運用.解題的關(guān)鍵是對圓性質(zhì)的熟練掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則(
PA
+
PB
)•
PC
的最小值是(  )
A、-
9
2
B、
9
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x3+ax2+36x-24在x=2處有極值,則該函數(shù)的極小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司計劃2014年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過180000元,甲、乙兩個電視臺的廣告收費標準分別為1000元/分鐘和400元/分鐘.規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為3000元和2000元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,an=2an-1+2 n+1
(1)若bn=
an
2n
,求證{bn}為等差數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+3
-
3-x
,求f(x)的定義域及值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
),x∈R.
(1)求函數(shù)f(x)的初相、最小正周期、對稱軸和對稱中心;
(2)用“五點法”作出函數(shù)f(x)的圖象;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=sin 2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
3
x
-
3x
)n
的展開式的各項系數(shù)之和等于(4
3x
-
1
5x
)5
展開式中的常數(shù)項,求(
3
x
-
3x
)n
展開式中含x-1的項的二項式系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是AA1的中點,CD⊥B1D.
(1)證明:CD⊥B1C1
(2)平面CDB1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

同步練習冊答案