【題目】已知為直角坐標系的坐標原點,雙曲線 上有一點),點軸上的射影恰好是雙曲線的右焦點,過點作雙曲線兩條漸近線的平行線,與兩條漸近線的交點分別為, ,若平行四邊形的面積為1,則雙曲線的標準方程是( )

A. B. C. D.

【答案】A

【解析】設平行線方程為,由,解得,則,又點到直線的距離,化簡得: ,又,又,解得,所以方程是,故選A.

【方法點晴】本題主要考查雙曲線的簡單性質(zhì)、雙曲線的漸近線及待定系數(shù)法求雙曲線方程,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某顏料公司生產(chǎn) 兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果產(chǎn)品的利潤為300元/噸, 產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得最大利潤為( )

A. 14000元 B. 16000元 C. 18000元 D. 20000元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用長14.8 m的鋼條制作一個長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求上的最大值和最小值;

(2)設曲線軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

K日 日期期

1日

2日

3日

4日

5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

(1)求這5天發(fā)芽數(shù)的中位數(shù);

(2)求這5天的平均發(fā)芽率;

(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(m,n)的形式列出所有基本事件,并求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,圓,圓心到拋物線準線的距離為3,點是拋物線在第一象限上的點,過點作圓的兩條切線,分別與軸交于兩點.

(1)求拋物線的方程;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知,函數(shù)

)若,求曲線在點處的切線方程.

)若,求在閉區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知集合,對于集合的兩個非空子集,若,則稱為集合的一組“互斥子集”.記集合的所有“互斥子集”的組數(shù)為(視為同一組“互斥子集”).

(1)寫出,的值;

(2)求.

查看答案和解析>>

同步練習冊答案