分析 設(shè)|AF|=a、|BF|=b,由拋物線定義結(jié)合梯形的中位線定理,得2|MN|=a+b.再由余弦定理得|AB|2=a2+b2+ab,結(jié)合基本不等式求得|AB|的范圍,從而可得$\frac{|MN|}{|AB|}$的最大值.
解答 解:設(shè)|AF|=a,|BF|=b,A、B在準(zhǔn)線上的射影點分別為Q、P,
連接AQ、BQ
由拋物線定義,得|AF|=|AQ|且|BF|=|BP|,
在梯形ABPQ中根據(jù)中位線定理,得2|MN|=|AQ|+|BP|=a+b.
由余弦定理得|AB|2=a2+b2-2abcos$\frac{2π}{3}$=a2+b2+ab,
配方得|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$) 2,
∴(a+b)2-ab≥(a+b)2-($\frac{a+b}{2}$) 2=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|MN|}{|AB|}$≤$\frac{\frac{a+b}{2}}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,即$\frac{|MN|}{|AB|}$的最大值為$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.
點評 本題給出拋物線的弦AB對焦點F所張的角為直角,求AB中點M到準(zhǔn)線的距離與AB比值的取值范圍,著重考查了拋物線的定義與簡單幾何性質(zhì)、梯形的中位線定理和基本不等式求最值等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n-2n | B. | 2n-3n | C. | 5n-2n | D. | 3n-4n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com