7.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足(a+1)${\;}^{\frac{m}{2}}$<(3-2a)${\;}^{\frac{m}{2}}$的實數(shù)a的取值范圍.

分析 根據(jù)冪函數(shù)的圖象與性質(zhì),求出m的值,再把不等式(a+1)${\;}^{\frac{m}{2}}$<(3-2a)${\;}^{\frac{m}{2}}$化為等價的不等式組,
求出它的解集即可.

解答 解:∵冪函數(shù)f(x)=x${\;}^{{m}^{2}-2m-3}$的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),
∴m2-2m-3<0,
解得-1<m<3;
又m∈N*
∴當(dāng)m=1時,12-2×1-3=-4,滿足題意;
當(dāng)m=2時,22-2×2-3=-3,不滿足題意;
∴不等式(a+1)${\;}^{\frac{m}{2}}$<(3-2a)${\;}^{\frac{m}{2}}$化為
$\sqrt{a+1}$<$\sqrt{3-2a}$,
即$\left\{\begin{array}{l}{a+1≥0}\\{3-2a≥0}\\{a+1<3-2a}\end{array}\right.$,
解這個不等式,得實數(shù)a的取值范圍是-1≤a<$\frac{2}{3}$.

點評 本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2x-$\frac{a}{x}$的定義域為(0,1](其中a是實數(shù))
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在定義域上是減函數(shù),求實數(shù)a的取值范圍;
(3)求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項均為正數(shù)的兩個數(shù)列{an}和{bn}滿足:an+1=$\frac{{a}_{n}+_{n}}{\sqrt{{{a}_{n}}^{2}+{_{n}}^{2}}}$,bn+1=1+$\frac{_{n}}{{a}_{n}}$,n∈N*
(1)求證:數(shù)列{($\frac{_{n}}{{a}_{n}}$)2}是等差數(shù)列;
(2)若a1=b1=1,令($\frac{_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,求證:$\frac{1}{{{c}_{1}}^{2}}$+$\frac{1}{{{c}_{2}}^{2}}$+$\frac{1}{{{c}_{3}}^{2}}$+…+$\frac{1}{{{c}_{n}}^{2}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在銳角△ABC中,角A、B、C所對的邊分別為a、b、c,若2a=b+c,則$\frac{tanA}{tanB}+\frac{tanA}{tanC}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x-a|.
(1)若a=2,解不等式f(x)≤2;
(2)若對任意的x∈R,恒有f(x)≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,A,B是拋物線上的兩個動點,且滿足∠AFB=$\frac{2π}{3}$.設(shè)線段AB的中點M在l上的投影為N,則$\frac{|MN|}{|AB|}$的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(1-x),g(x)=log${\;}_{\frac{1}{2}}$(1+x)
(1)設(shè)函數(shù)F(x)=f(x)-g(x),求F(-$\frac{3}{5}$)的值;
(2)若x∈[0,1],f(m-2x)≤$\frac{1}{2}$g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若某校研究性學(xué)習(xí)小組共6人,計劃同時參觀科普展,該科普展共有甲,乙,丙三個展廳,6人各自隨機地確定參觀順序,在每個展廳參觀一小時后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時時間內(nèi),甲,乙,丙三個展廳恰好分別有該小組的2個人;事件B為:在參觀的第二個小時時間內(nèi),該小組在甲展廳人數(shù)恰好為2人.則P(B|A)=( 。
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{3}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“sinA=$\frac{1}{2}$”是“A=30°”的( 。
A.充分而不必要條件B.既不充分也不必要條件
C.充分必要條件D.必要而不充分條件

查看答案和解析>>

同步練習(xí)冊答案