16.已知函數(shù)f(x)=x2-2x+2,g(x)=ax2+bx+c,若這兩個函數(shù)的圖象關(guān)于(2,0)對稱,則f(c)=(  )
A.122B.5C.26D.121

分析 求出函數(shù)f(x)=x2-2x+2的對稱軸與頂點坐標,然后求解g(x)=ax2+bx+c的系數(shù),得到c,即可求解f(c)的值.

解答 解:函數(shù)f(x)=x2-2x+2,的對稱軸為:x=1,頂點坐標(1,1),開口向上;過(0,2)
函數(shù)f(x)=x2-2x+2,g(x)=ax2+bx+c,若這兩個函數(shù)的圖象關(guān)于(2,0)對稱,
可知g(x)=ax2+bx+c,的對稱軸為:x=3,頂點坐標(3,-1)開口向下.(0,2)關(guān)于(2,0)的對稱點為:(4,-2).
可得$\left\{\begin{array}{l}{a<0}\\{-\frac{a}=3}\\{9a+3b+c=-1}\\{16a+4b+c=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{4}}\\{b=\frac{3}{4}}\\{c=-1}\end{array}\right.$,
f(-1)=(-1)2+2+2=5.
故選:B.

點評 本題考查二次函數(shù)的性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率e=$\frac{{\sqrt{2}}}{2}$,準線方程為x=2$\sqrt{2}$,左、右焦點分別為F1,F(xiàn)2
(1)求橢圓C的方程
(2)已知點P(${\sqrt{2}$,1)點M在線段PF2上,且MF1+MF2=3,F(xiàn)1M延長線交橢圓于點Q,求$\frac{{{S_{△MP{F_1}}}}}{{{S_{△MQ{F_2}}}}}$;
?(3)點A、B為橢圓C上動點,PA、PB斜率分別為k1,k2,當k1k2=-$\frac{1}{2}$時,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足f(x)•f(x+2)=2,若f(3)=2,則f(2017)=( 。
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC的周長為$\sqrt{3}+1$,且$sinA=\sqrt{3}sinC-sinB$.
(1)求邊c的長;    
(2)若△ABC的面積為$\frac{1}{3}sinC$,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.y=|log2(3-2x)|的單調(diào)遞增區(qū)間$(1,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a,b是兩條不同的直線,α、β是兩個不同的平面,下列說法中正確的是(  )
A.若a∥b,a∥α,則b∥αB.若a⊥b,a⊥α,b⊥β,則α⊥β
C.若α⊥β,a⊥β,則a∥αD.若α⊥β,a∥α,則a⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)為定義在[-1,1]上的奇函數(shù),當x∈[-1,0]時,函數(shù)解析式為$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$.
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}是遞增的等比數(shù)例,a1+a4=9,a2a3=8,Sn為數(shù)列{an}的前n項和,則S4=( 。
A.15B.16C.18D.31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.小華同學制作了一個簡易的網(wǎng)球發(fā)射器,可用于幫忙練習定點接發(fā)球,如圖1所示,網(wǎng)球場前半?yún)^(qū)、后半?yún)^(qū)總長為23.77米,球網(wǎng)的中間部分高度為0.914米,發(fā)射器固定安裝在后半?yún)^(qū)離球網(wǎng)底部8米處中軸線上,發(fā)射方向與球網(wǎng)底部所在直線垂直.為計算方便,球場長度和球網(wǎng)中間高度分別按24米和1米計算,發(fā)射器和網(wǎng)球大小均忽略不計.如圖2所示,以發(fā)射器所在位置為坐標原點建立平面直角坐標系xOy,x軸在地平面上的球場中軸線上,y軸垂直于地平面,單位長度為1米.已知若不考慮球網(wǎng)的影響,網(wǎng)球發(fā)射后的軌跡在方程=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).發(fā)射器的射程是指網(wǎng)球落地點的橫坐標.

(1)求發(fā)射器的最大射程;
(2)請計算k在什么范圍內(nèi),發(fā)射器能將球發(fā)過網(wǎng)(即網(wǎng)球飛行到球網(wǎng)正上空時,網(wǎng)球離地距離大于1米)?若發(fā)射器將網(wǎng)球發(fā)過球網(wǎng)后,在網(wǎng)球著地前,小明要想在前半?yún)^(qū)中軸線的正上空選擇一個離地面2.55米處的擊球點正好擊中網(wǎng)球,試問擊球點的橫坐標a最大為多少?并請說明理由.

查看答案和解析>>

同步練習冊答案