6.計(jì)算:${∫}_{-2}^{2}({x}^{3}+\sqrt{4-{x}^{2}})dx$=2π.

分析 根據(jù)定積分的幾何意義和定積分的計(jì)算即可求出.

解答 解:${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原點(diǎn)為圓心以2為半徑的圓的面積的二分之一,
所以${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{2}$×4π=2π,
${∫}_{-2}^{2}$x3dx=$\frac{1}{4}$x4|${\;}_{-2}^{2}$=0,
∴${∫}_{-2}^{2}({x}^{3}+\sqrt{4-{x}^{2}})dx$=2π,
故答案為:2π

點(diǎn)評(píng) 本題考查了定積分的幾何意義和定積分的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$則f(2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)和橢圓C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>b2>0)的焦點(diǎn)相同,且a1>a2,則下面結(jié)論正確的是(  )
①橢圓C1和橢圓C2一定沒(méi)有公共點(diǎn)           ②a12-a22=b12-b22
③$\frac{{a}_{1}}{{a}_{2}}$>$\frac{_{1}}{_{2}}$                                 ④a1-a2<b1-b2
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若2sin2α+sin2β-2sinα=0,則cos2α+cos2β的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù).
(1)$y=\frac{e^x}{x}$;           
(2)y=(2x2-1)(3x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=x-4y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:①d<0;②S11>0;③S12<0;④S8>S5,其中正確命題序號(hào)是( 。
A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司生產(chǎn)甲,乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需消耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需消耗A原料2千克、B原料1千克.每桶甲產(chǎn)品利潤(rùn)300元,每桶乙產(chǎn)品利潤(rùn)400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗A、B原料都不超過(guò)12千克.那么該公司每天如何生產(chǎn)獲得利潤(rùn)最大?最大利潤(rùn)是多少?(作出圖象)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

同步練習(xí)冊(cè)答案