13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-2y≤0}\\{y-2≤0}\end{array}\right.$,則z=x+2y-3的最大值為5.

分析 先由約束條件畫出可行域,再求出可行域各個角點(diǎn)的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗證即得答案.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由圖易得:$\left\{\begin{array}{l}{y=2}\\{x-2y=0}\end{array}\right.$當(dāng)x=4,y=2時
z=x+2y-3的最大值為5,
故答案為:5.

點(diǎn)評 在解決線性規(guī)劃的小題時,我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗證,求出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx-ωπ)(ω>0)的最小正周期為π,則f($\frac{π}{12}$)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)α,β為銳角,且$\overrightarrow{a}$=(sinα,-cosα),$\overrightarrow$=(-cosβ,sinβ),$\overrightarrow{a}$+$\overrightarrow$=($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{2}}{2}$),求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin(2x+$\frac{π}{4}$),則下列結(jié)論中正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對稱
C.由函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位長度可以得到函數(shù)y=sin2x的圖象
D.函數(shù)f(x)在區(qū)間($\frac{π}{8}$,$\frac{5π}{8}$)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a$+$\overrightarrow b$=(2,-8),$\overrightarrow a$-$\overrightarrow b$=(-8,16),則$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N+,n≥2)的展開式中,x的系數(shù)為$\frac{15}{16}$,則x2的系數(shù)為( 。
A.$\frac{15}{16}$B.$\frac{31}{128}$C.$\frac{35}{128}$D.$\frac{31}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a、b、c∈(0,+∞),且acos2θ+bsin2θ<c,求證:$\sqrt{a}$cos2θ+$\sqrt$sin2θ<$\sqrt{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等比數(shù)列{an}中,公比q≠1,它的前n項和為M,數(shù)列{$\frac{2}{{a}_{n}}$}的前n項和為N,則$\frac{M}{N}$的值為$\frac{{{{a}_{1}}^{2}q}^{n-1}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案