15.在△ABC中,∠B為鈍角,則有( 。
A.sinA>cosBB.sinA<cosB
C.sinA=cosBD.sinA,cosB大小不確定

分析 根據(jù)三角函數(shù)值的符號(hào)值進(jìn)行判斷即可.

解答 解:在△ABC中,∠B為鈍角,則cosB<0,sinA>0,
則恒有sinA>cosB,
故選:A

點(diǎn)評(píng) 本題主要考查三角函數(shù)取值符號(hào)和角的關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinθ=2cosθ,則sin2θ+sinθcosθ-2cos2θ=( 。
A.$-\frac{4}{3}$B.$\frac{5}{4}$C.$-\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為( 。
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}中,a2=2,a5=128.
(1)求通項(xiàng)an;
(2)若bn=log2an,{bn•an}數(shù)列的前n項(xiàng)和為Sn,求Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sinx-$\sqrt{3}$cosx+2,記函數(shù)f(x)的最小正周期為β,向量$\overrightarrow a=(2,cosα)$,$\overrightarrow b=(1,tan(α+\frac{β}{2}))$,$(0<α<\frac{π}{4})$,且$\overrightarrow a•\overrightarrow b=\frac{7}{3}$
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求$\frac{{2{{cos}^2}α-sin2(α+β)}}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若在區(qū)間(a,b)內(nèi),f′(x)>0,且f(a)≥0,則在(a,b)內(nèi)有( 。
A.f(x)>0B.f(x)<0C.f(x)=0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{x^2}{16}-\frac{y^2}{4}=1$的離心率e的值為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知:$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)的三個(gè)向量,其中向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2)
(1)若k$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-4$\overrightarrow$平行,求實(shí)數(shù)k的值;
(2)若k$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-4$\overrightarrow$垂直,求實(shí)數(shù)k的值.
(3)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知Sn=2n2+4n,設(shè){$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,證明:$\frac{1}{6}$≤Tn≤$\frac{3}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案