若對于任何實數(shù),二次不等式ax2-x+c<0的解集為R,那么a、c應(yīng)滿足( 。
A、a>0且ac≤
1
4
B、a<0且ac<
1
4
C、a<0且ac>
1
4
D、a<0且ac<0
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:根據(jù)題意,列出不等式組
a<0
=(-1)2-4ac<0
,求出解集即可.
解答: 解:∵對于任何實數(shù),二次不等式ax2-x+c<0的解集為R,
a<0
=(-1)2-4ac<0
,
解得
a<0
ac>
1
4
;
∴a、c應(yīng)滿足a<0且ac>
1
4

故選:C.
點評:本題考查了一元二次不等式的恒成立問題,是基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知y=e-xsinx,求dy.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AA1=2,AB=4,AC=BC=3,D為AB的中點,且AB1⊥A1C
(I)求證:AB1⊥A1D;
(Ⅱ)求二面角A-A1C-D的平面的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù);
(2)若x∈[-5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α⊥平面β,直線a⊥β,a?α.求證:a∥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,AA1=a,E、F分別是BC、DC的中點,則AD1與EF所成的角的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈[1,5]時,函數(shù)f(x)=3x2-4x+c的值域為(  )
A、[f(1),f(5)]
B、[f(1),f(
2
3
)]
C、[f(
2
3
),f(5)]
D、[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ln(
e-3x+1
e3x+1
)=2ax,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,5),B(3,9),O為坐標原點,若點C滿足
OC
OA
OB
,其中α,β∈R,且α+β=1,則點C的軌跡方程為(  )
A、2x+y-7=0
B、2x-y+3=0
C、x-2y+9=0
D、x+2y-11=0

查看答案和解析>>

同步練習冊答案