【題目】定義:若兩個(gè)橢圓的離心率相等,則稱兩個(gè)橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個(gè)橢圓,并且相交于上下兩個(gè)頂點(diǎn).橢圓的長軸長是4,橢圓短軸長是1,點(diǎn)分別是橢圓的左焦點(diǎn)與右焦點(diǎn).
(1)求橢圓的方程;
(2)過的直線交橢圓于點(diǎn),求面積的最大值.
【答案】(1)見解析(2)函數(shù)在上的最大值.
【解析】
【試題分析】
解:(1)當(dāng)時(shí), ,
令,得,
當(dāng)變化時(shí), 的變化如下表:
0 | |||||
+ | 0 | - | 0 | + | |
極大值 | 極小值 |
由上表可知,函數(shù)的遞減區(qū)間為,遞增區(qū)間為.
(2),令,得,
令,則,所以在上遞增,
所以,從而,所以,
所以當(dāng)時(shí), ;當(dāng)時(shí), ;
所以.
令,則,令,則,
所以在上遞減,而,
所以存在使得,且當(dāng)時(shí), ;當(dāng)時(shí), ,所以在上單調(diào)遞增,在上單調(diào)遞減.
因?yàn)?/span>,所以在上恒成立,當(dāng)且僅當(dāng)時(shí)取得“=”.
綜上,函數(shù)在上的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對于,總有.(i)求實(shí)數(shù)的范圍; (ii)求證:對于,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中, , 是的中點(diǎn),將三角形沿翻折到圖②的位置,使得平面平面.
(Ⅰ)在線段上確定點(diǎn),使得平面,并證明;
(Ⅱ)求與所在平面構(gòu)成的銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓左焦點(diǎn)的直線交于、兩點(diǎn),若對滿足條件的任意直線,不等式()恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計(jì) | 1 |
(1)求出表中及圖中的值;
(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員參加的每場比賽得分的莖葉圖,由甲、乙兩人這幾場比賽得分的中位數(shù)之和是( )
A.65
B.64
C.63
D.62
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個(gè)班級的學(xué)生成績進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計(jì) |
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ),曲線在處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對數(shù)的底數(shù), ),若是的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com